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ABSTRACT

The very notion of the parameters being piece-wise constant implies
a sparse first order derivative. This property combined with the con-
cept of Linear Regression (Sparse Linear Regression) is used to esti-
mate the parameters of quasi-stationary signals like frequency hop-
ping (FH) signals and speech. In FH signals, this helps in the robust
estimation of carrier frequencies and hop instances. This is possi-
ble even in the presence of multiple FH signals. In case of speech
signals, quasi-stationarity of speech is leveraged to estimate time-
varying (TV) piece-wise constant auto-regressive (AR) coefficients.
These AR coefficients can be used to compress the speech signal.

Index Terms— frequency hopping, sparse linear regression,
auto-regressive process, LASSO, SCAD, alternating direction
method of multipliers, block coordinate descent

1. INTRODUCTION

We analyse the use Sparse Linear Regression to tackle two different
problems, namely Parameter estimation of frequency hopping sig-
nals [1] and speech compression [2]. Here we assume a linear model.
Hence, given a sequence of observations Y = [y1, y2, . . . , yN ], we
have

Y = AX + e (1)

where A is known and X needs to be estimated. e is additive
noise.

The most common way to obtain X is to minimize ‖Y −AX‖22.
This is called least-squares method. It is a convex function and ad-
mits a closed form solution. However, in many cases some function
of X is sparse. Exploiting this property of X can provide better so-
lutions as we incorporate prior information about the representation
X in the form of its sparsity.

So, the optimization problem that we will be dealing with in this
project is

arg min
X

‖Y −AX‖22 s.t. ‖f(X)‖0 < η (2)

where f(X) is some function of X. This is called Sparse Linear
Regression. This can be re-written in the Lagrangian form i.e,

arg min
X

{
‖Y −AX‖22 + λ ‖f(X)‖0

}
(3)

where the relation between λ and η depends on the data. The param-
eter λ can be tweaked to induce the desired sparsity to the solution
i.e, higher lambda favours sparser solutions and vice-versa.

  

Fig. 1. Illustrative IF-gram of a signal with 2 FH signals. The IF-
gram contains magnitude of the carrier frequencies at each time in-
stant. The IF-gram contains 3 dwell periods and 2 hop instances n1

and n2. Themth carrier frequency in the kth dwell are shown to the
left.

2. ESTIMATION OF FREQUENCY HOPPING SIGNALS

Frequency hopping is the phenomenon used in the transmission of
radio signals where the carrier hops from one frequency to another.
This was invented to prevent jamming of the signal. However, in
the presence of multiple frequency hopping transmitters, a receiver
receives all of them simultaneously. Hence, it is important to first ex-
tract accurate information about all the transmitted carriers and the
hop instants so that the desired carrier can then be tapped into. Ac-
curate hop instant estimation is very essential to prevent information
loss.

2.1. Mathematical Model

Consider the noiseless signal s(t), which at time t ∈ [tk−1, tk) con-
sists of Mk pure tones corresponding to the Mk frequency hopping
signals i.e,

s(n) =

Mk∑
m=1

am,ke
j2πωm,kn, nk−1 ≤ n < nk (4)

where n ∈ {0, 1, . . . , N − 1}, am,k ∈ C is the complex ampli-
tude and ωm,k ∈ [−π, π] is the frequency of the mth tone in the
kth system-wise dwell [nk−1, nk). A system-wise dwell is an inter-
val over which all tone frequencies and complex amplitudes remain
constant. nk is the kth system-wise hopping instant and N is the



  

Fig. 2. The IF-gram X is sparse and so is the first order difference
of X i.e, DX . This property can be used to introduce sparsity con-
straints into the objective function. (DX is the first-order difference
operator.)

total duration of the signal. s(n) is corrupted by additive circularly-
symmetric complex Gaussian noise v(n) ∼ CN(0, σ2) to give y(n)
i.e,

y(n) = s(n) + v(n), 0 ≤ n ≤ N − 1. (5)

The matrix corresponding to the instantaneous frequency pa-
rameters similar to the spectrogram is shown in Figure 1. We
refer to this as the instantaneous frequency gram (IF-gram). Let
us define Y = [y0, . . . , yN−1]T and W = [w0, . . . , wN−1]T ,
wi = [01×Pi, e

j2πω1i, . . . , ej2πωP i,01×(N−i−1)P ]T . We then de-
fine X = [A0, A1, . . . , AN−1]T where Ai is the transpose of the
ith column of the IF-gram. Assuming no noise condition, we can
now introduce the linear model for the FH signal as

Y = WX (6)

2.2. Parameter estimation

Figure 2 shows the reference IF-gram considered for simulations in
this project. The vectorized form of the IF-gram,X has been defined
as X. It can be seen from Figure that X is sparse. So, in line with
equation 3 we can introduce ‖X‖0 to obtain the Lagrangian as

arg min
X

{
‖Y −WX‖22 + λ1 ‖X‖0

}
(7)

Now, as seen in Figure 2, the first order difference of the columns
of the of the IF-gram is also sparse. In fact this is sparser than the
IF-gram. Incorporating this into equation 7 we get

arg min
X

{
‖Y −WX‖22 + λ1 ‖X‖0 + λ2 ‖DX‖0

}
(8)

where D is the first-order difference operator modified to oper-
ate on the vectorized form, X, of the IF-gram. We have now formu-
lated the objective function to estimate the frequency-hopping pa-
rameters. However, the above objective function is non-convex and
optimization is an NP-hard problem. So we introduce l1 relaxation
to make the function convex i.e,

arg min
X

{
‖Y −WX‖22 + λ1 ‖X‖1 + λ2 ‖DX‖1

}
(9)

This objective function, though convex, does not admit to a
closed form solution. However, there are several iterative methods
to optimize this function. They include interior point solvers and
coordinate descent algorithms. However, in large size problems,

interior point solvers are not suitable and coordinate descent algo-
rithms have issues converging to the global minima [1]. Angelosante
et al. [1] derive update rules using alternating direction method of
multipliers (ADMoM). The optimization problem is formulated as
follows

[X̂, ẑ, û] := arg min
X,z,u

[
1

2
‖y −WX‖22 + λ1‖z‖1 + λ1‖u‖1

]
s.t. z = X, u = DX

(10)

The corresponding quadratically augmented Lagrangian is

L(X, z, u, ζ, µ) =
1

2
‖y −WX‖22 + λ1‖z‖1 + +λ1‖u‖1+

R{ζH(x− z) + µH(DX− u)}+
c

2

(
‖x− z‖22 + ‖DX− u‖22

) (11)

The update rules are obtained using ADoMM are as follows.

X(i) =
1

c
(WHW + DHD + INP )−1(cWHy+

cz(i−1) + cDHu(i−1) − ζ(i−1) −DHµ(i−1) −WHρ(i−1))

(12)

z(i−1) = shrink
(
X(i) +

ζ(i−1)

c
,
λ1

c

)
(13)

u(i−1) = shrink
(
DX(i) +

µ(i−1)

c
,
λ2

c

)
(14)

ζ(i) = ζ(i−1) + c
(
X(i) − z(i)

)
(15)

µ(i) = µ(i−1) + c
(
DX(i) − u(i)) (16)

shrink(x, y) :=

{
0, if x = 0
x
|x|max

(
|x| − y, 0

)
, otherwise

(17)

2.3. Tuning regularization parameters

We know that the sparsity of X is directly proportional to λ1. This
implies that, with increase in λ1, X gets closer to the zero matrix.
Proposition 1 provides an upper bound on λ1 to prevent this spurious
solution.

Proposition 1: If λ2 = 0, then x̂ = 0NP if and only if λ1 ≥
λ∗1 := ‖WHY‖∞

So, choosing λ1 < λ∗1 guarantees a non-zero solution to the
optimization problem. The reference IF-gram gives a value of λ∗1 =
2. So, choosing λ1 > 2 should ensure that we do not get the all
zero solution. We will validate this proposition further in the next
section. Let, T lN denote the N ×N lower triangular matrix with all
nonzero entries equal to one. Define Σ :=TlN ⊗ IP , and partition
the matrix product WΣ into M0 ∈ CN×P and M ∈ CN×(N−1)P ,
so that [M0,M ] := WΣ.

Proposition 2: If λ2 = 0 and M0 has full column rank, then
x̂ = [xTc , . . . ,x

T
c ]T with xTc := (MH

0 M0)−1MH
0 Y, if and only if

λ2 ≥ λ∗2 := ‖MH
0 (M0xc − Y )‖∞

Similarly, the sparsity of DX is directly proportional to λ2 and
Proposition 2 provides an upper bound on λ2. Choosing λ2 < λ∗2
ensures that DX is a non-zero vector.



  

Fig. 3. The original IF-gram and the estimated IF-grams obtained for various values of λ1 and λ2. It can be seen that the estimated IF-gram
gets progressively better as we move from (a) to (f)

2.4. Experiments and Results

2.4.1. Validating the need for sparsity

We first perform the experiment by considering λ1 & λ2 = 0. This
is equivalent to least squares estimation. The estimated IF-gram is
shown in Figure 4. It can be seen that the estimated IF-gram is dense
and it does not match the original IF-gram.

  

Fig. 4. For λ1 and λ2 = 0, it can be seen that the estimated IF-gram
is very dense and does not correspond to the original IF-gram.

2.4.2. Introducing λ1

Now, we consider regularization with λ1 > 0 & λ2 = 0. This
introduces sparsity only on X and not on DX. The estimated IF-
grams for 3 different λ1 values are shown in Figure 3(b-d). λ1 = 0.1
gave the sparsest solution. However, the estimated IF-grams still do
not match to the original. Note that all the λ1 values are less than
λ∗1 = 2 and all the estimated IF-grams are non-zero.

2.4.3. Introducing λ1 & λ2

Further, we consider both λ1 & λ2 > 0. We start with λ1 = 0.1
and a low value for λ2 = 0.008. It can be seen in Figure 3 that
estimated IF-gram is far superior to the ones obtained without reg-
ularization using λ2. For λ1 = 0.1 and λ2 = 0.8, the estimated
IF-gram matches almost perfectly to the original IF-gram.

2.4.4. Validating Proposition 1

To validate proposition 1, we run the ADoMM updates for various
values of λ1 varying from 0.2 to 3 in steps of 0.2. The λ∗1 obtained
for this particular signal is 2. So, under the assumption that ADoMM
necessarily converges to the solution of equation , we expect ‖X‖1
to be very close to 0 when λ1 ≥ 2.. As seen in Figure 5, ‖X‖1 ' 0
when λ1 ≥ 2. It also validates that choosing λ1 < λ∗1 = 2 ensures
that X is non-zero.

  

Fig. 5. l1 norm of estimated IF-gram vs. λ1
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Fig. 6. Probability of incorrect hop instant estimation vs. SNR.

2.4.5. Hop instant estimation under noisy conditions

Let [x̂0, x̂1, . . . , x̂N−1] be the estimated IF-gram where x̂i is the
column corresponding to the ith time index. Let [d1, d2, . . . , dN−1]
be the first-order difference matrix where di = x̂i − x̂i−1. We
then calculate the vector d = [‖d1‖1, ‖d2‖1, . . . , ‖dN−1‖1]. Un-
der the assumption that the IF-gram is correctly estimated, d will
be a sparse vector and the non-zero locations correspond to the hop
instants. Therefore hop instants are estimated using the peaks of d.

We assume that the number of hop instances in known, i.e. in
our case it is equal to 2. So we pick the 2 most prominent peaks from
d and use their corresponding locations as the hop instants. The hop
instant is determined as correctly estimated if the location lies within
Nw instants from the actual location. We choose Nw = 3. Additive
circularly-symmetric complex Gaussian noise is added to simulate
SNRs from 0 to 10 in the steps of 2. We define PNCA as the proba-
bility that the estimated hop instants were incorrect. This probability
is calculated for each SNR by using 1000 different realizations of
noise. Figure 6 shows the PNCA vs. SNR curve.



3. TIME VARYING AR PARAMETER ESTIMATION

Sum-of-exponentials models with piecewise constant parameters,
as discussed in the previous section, are encountered in several
branches of engineering like communications and radar. But, the
natural signals such as speech and electroencephalogram (EEG)
do not conform with it. For signals like that, Autoregressive (AR)
models have been deployed for parametric spectral estimation, since
they form a dense set in the class of continuous spectra. While
AR modeling of stationary random processes is well appreciated,
many signals encountered in real life are nonstationary (e.g., speech
signals). In the next section, TV-AR (Time Varying - Autoregres-
sive) models with piecewise-constant coefficients are introduced.
Identification of the coefficients is regarded as a sparse linear regres-
sion with grouped variables, which enables the usage of efficient
algorithms.

3.1. Problem Statement

Let {yn}Nn=−L denote the realization of an Lth order TV-AR pro-
cess obeying the discrete-time input-output relationship as:

yn =

L∑
l=1

al,nyn−l + vn, n = 0, 1, ..., N

where vn denotes the zero-mean white input noise at time n with
variance σ2 := E[v2n] < ∞ and al,n := is the lth TV-AR coeffi-
cient at time n. With hn := [yn−1, yn−2, ...., yn−L]T ∈ RL and
an := [a1,n, a2,n, ...., aL,n]T ∈ RL, the observation model can be
rewritten as

yn = hTnan + vn, n = 0, 1, ...., N (18)

Suppose that abrupt changes in the spectrum of {yn} occur due
to piecewise-constant changes of ak, i.e.,

an = ak, nk ≤ n ≤ nk+1 − 1 (19)

for k = 0,1,....,K, where K denotes the number of abrupt changes
in the TV-AR spectrum, and nk the time instant of the kth abrupt
change. The interval [nk, nk+1−1] is referred to as the kthsegment.
Without loss of generality, let n0 = 0 and nK+1 − 1 = N .

In this context, the goal is to identify the instants {nk}Kk=1 where
the given time series {yn} is split into K + 1 (stationary) segments,
and also estimate the constant AR coefficients per segment, i.e.,
{ak}Kk=0. The number of abrupt changes, specifically K, is not nec-
essarily known.

3.2. Parameters estimation

3.2.1. Formulation of the problem statement

Let, dn denote the difference vector defined as:

dn :=

{
an, if n = 0.

an − an−1, otherwise.
(20)

Regularized LS is the approach used for estimating the pa-
rameters. With µ denoting a positive tuning constant, an l0-type
regularization is typically adopted to estimate the change points and
the AR coefficients as

{ǎn}Nn=0 := arg min
{an}Nn=0

[1

2

N∑
n=0

(yn − hTnan)2 + µ

N∑
n=1

δ0L(dn)
]

(21)

where the indicator function δ0L(·) : RL → 0, 1 is defined as

δ0L(a) :=

{
0, if a = 0L.

1, otherwise.
(22)

3.2.2. Utilizing the Group Sparsity of Difference Vectors

From a practical point of view, the minimization of (21) is challeng-
ing since an exhaustive search over all the possible sets of change
instants has to be performed. Several techniques have been devel-
oped to evaluate it, out of which DP is one which solves the prob-
lem in polynomial time, the computational complexity is cubic in
N, which limits their applicability to signal segmentation in practice
since N can be very large in typical real time applications and cubic
complexity cannot be afforded.

Hence, the convex relaxation of the cost in (21) is advocated
based on recent advances in sparse linear regression and compressive
sampling. To this end, (21) is first reformulated into a sparse regres-
sion problem with non-convex regularization that is subsequently re-
laxed through a tight convex approximation. It enables remarkably
accurate retrieval of change points, obtained via an efficient ”block-
coordinate descent iteration” that incurs only ”linear” computational
burden and memory storage.

Therefore, now exploiting the group sparsity of coefficient
changes, to disclose the connections between ”TV-AR signal seg-
mentation” and ”sparse linear regression”, we will make use of dn,
the difference vectors.

Using (20), the problem in (21) can be rewritten as:

{ďn}Nn=0 := arg min
{dn}Nn=0

[1

2
‖y −Xd‖22 + µ

N∑
n=1

δ0L(dn)
]

(23)

where d := [dT0 , d
T
1 , ...., d

T
N ]T ∈ R(N+1)L, and

X :=


hT0 0TL 0TL · · · 0TL 0TL
hT0 hT0 0TL · · · 0TL 0TL
...

...
...

. . .
...

...
hTN−1 hTN−1 hTN−1 · · · hTN−1 0TL
hTN hTN hTN · · · hTN−1 hTN

 (24)

And we can recover the coefficients {an}Nn=0 easily from the
difference vectors {dn}Nn=0 using

an =

n∑
n′=0

dn′ (25)

3.2.3. Introducing the convexity

The non-convex regularization term in (23) makes it challenging. It
”pushes” most of the {dn}Nn=1 vectors towards 0L, while d0 is not
penalized. As a consequence, the vector ď := [ďT0 , ď

T
1 , ...., ď

T
N ]T

is group sparse, and the nonzero group indices correspond to the
change instants of the TV-AR coefficients.



Recently, a convex model selector with grouped variables was
put forth by [3] and successfully applied to bio-statistics and com-
pressive sampling. It generalizes the (nongrouped) Least-Absolute
Shrinkage and Selection Operator (Lasso) [4] to regression problems
where the unknown vector exhibits sparsity in groups; hence, its
name ”group Lasso”. The crux of group Lasso is to relax the reg-
ularization in (23) with a tight convex approximation.

For grouped variables, it holds that the equivalent of ”the
sparsity-promoting l1-norm” is ”the sum of the l2-norms” [3].

After group Lasso is applied for catching change points by esti-
mating the difference vectors, (23) becomes:

{d̂n}Nn=0 := arg min
{dn}Nn=0

[1

2
‖y −Xd‖22 + λ

N∑
n=1

‖dn‖2
]

(26)

where λ is a positive tuning parameter.
It is known that the group Lasso regularization encourages group

sparsity i.e., ďn = 0L for most n > 0 [3]. Again, larger the λ, the
sparser the ď.
‖dn‖2 is non-differentiable at dn = 0L, which enables group

Lasso to encourage group sparsity.
Needless to say that convexity of the regularizing functions

avoids the presence of local minima, and allows for solving the
resulting optimization problem efficiently. To this end, an effi-
cient ”block-coordinate descent algorithm” is developed in [2], with
computational complexity per iteration that scales linearly with N.

3.2.4. Block-coordinate Descent Algorithm

The crux of block-coordinate descent is to iterate minimization of
the function of interest over a group of variables, while keeping the
rest fixed. We can write the objective function as:

J(d) :=
1

2
‖y −Xd‖22 + λ

N∑
n=1

‖dn‖2 (27)

and let d(i−1) := [d
(i−1)T

0 , d
(i−1)T

1 , ...., d
(i−1)T

N ]T denotes the pro-
visional solution at iteration i − 1. The nth step of the ith block-
coordinate descent iteration entails minimization of J(d) only with
respect to dn, while retaining the provisional estimates at iteration
i − 1, namely {d(i−1)

n′ }Nn′=n+1, and the newly updated blocks at it-
erations i, namely {d(i)n′ }n−1

n′=0. Thus, block-coordinate descent at the
nth step of the ith iteration yields

d(i)n = argmin
dn

J
([
d
(i)
0 , ...., d

(i)
n−1, dn, d

(i−1)
n+1 , ...., d

(i−1)
N

])
(28)

for n = 0, 1, ...., N and i > 0. Skipping constant terms, (10)
can be rewritten as:

J(d) =
1

2
dTXTXd− dTXT y + λ

N∑
n=1

‖dn‖2 (29)

=⇒ J(d) =
1

2
dTRd− dT r + λ

N∑
n=1

‖dn‖2 (30)

where R := XTX , and r := XT y. Upon defining Rn:n′ :=∑n′

m=n hmh
T
m and rn:n′ :=

∑n′

m=n hmym for n′ ≥ n, it holds that

R =


R0:N R0:N · · · RN−1:N RN :N

R1:N R1:N · · · RN−1:N RN :N

...
...

. . .
...

...
RN−1:N RN−1:N · · · RN−1:N RN :N

RN :N RN :N · · · RN :N RN :N

 (31)

and

r =


r0:N
r1:N

...
rN−1:N

rN :N

 (32)

Now, if we define gn(i) as:

gn(i) = Rn:N

( n−1∑
n′=0

d
(i)

n′

)
+

N∑
n′=n+1

Rn′:Nd
(i−1)

n′ − rn:N (33)

To build the block-coordinate descent algorithm, we need to de-
fine few terms first:

c(i)n :=

n−1∑
n′=0

d
(i)

n′ (34)

s(i)n :=

N∑
n′=n+1

Rn′:Nd
(i−1)

n′ (35)

it follows from (33) that,

g(i)n = Rn:Nc
(i)
n + s(i)n − rn:N (36)

which shows that evaluating g(i)n requires only the vectors c(i)n and
s
(i)
n . Given {d(i−1)

n }Nn=0 from the (i−1)th iteration, and initialising
c
(i)
n and s(i)n at n = 0 as c(i)0 = 0L and s(i)0 =

∑N
n=1Rn:Nd

(i−1)
n ,

it is possible to recursively evaluate c(i)n and s(i)n given c(i)n−1, s(i)n−1

and d(i)n−1 from step n− 1 for n > 0 as

c(i)n = c
(i)
n−1 + d

(i)
n−1 (37)

s(i)n = s
(i)
n−1 −Rn:Nd

(i−1)

n′ (38)

Since, only {Rn:N}Nn=0 and {rn:N}Nn=0 are needed to imple-
ment the block-coordinate descent algorithm ( for evaluating g(i)n ,
c
(i)
n and s(i)n ), X need not be stored. Thus, the memory storage and

complexity to perform one block-coordinate descent iteration grow
linearly with N. This attribute renders the block-coordinate descent
appealing especially for large-size problems where other approaches
tend to be expensive.

The Block-coordinate descent algorithm is:
Given {Rn:N , rn:N}Nn=0.
Initialize with d(0)n = 0L for n = 1, 2, ...N .
for i > 0 do

for n = 0, 1, ...., N do
if n = 0 then
c
(i)
0 = 0L

s
(i)
0 =

∑N
n=1Rn:Nd

(i−1)
n−1



g
(i)
0 = s

(i)
0 − r0:N

d
(i)
0 = −R−1

0:Ng
(i)
0

else
c
(i)
n = c

(i)
n−1 + d

(i)
n−1

s
(i)
n = s

(i)
n−1 −Rn:Nd

(i−1)

n′

g
(i)
n = Rn:Nc

(i)
n + s

(i)
n − rn:N

if ‖g(i)n ‖2 ≤ λ then
d
(i)
n = 0L

else
d
(i)
n =argmindn ∈ RL

[
1
2
dTnRn:Ndn + dTng

(i)
n + λ‖dn‖2

]
3.3. Tuning regularization parameters

Selection of λ is a critical issue since larger λ’s promote sparser
solutions , which translate to fewer changes in TV-AR spectrum.
However, larger λ’s increase the estimator bias as well. If the number
of changes are known a priori, λ can be tuned accordingly. But, in
general, there are no analytic tools to automatically choose the ”best”
λ.

Bound λ Proposition for avoiding the trivial(change-free) solu-
tion.
Proposition: If X0 has full column rank, then d̂ = [dT0,c, 0

T
L , ....., 0

T
L ]T

with d0,c := (XT
0 X0)−1XT

0 y, if and only if λ ≥ λ∗ :

max
n=1,2,....,N

‖XT
n (X0d0,c − y)‖2

Therefore, λmust be chosen strictly greater than λ∗ to avoid the
trivial(change-free) solution.

The regularized function we are trying to minimize is :

arg min
{dn}Nn=0

[1

2
‖y −Xd‖22 +

N∑
n=1

pλ(|dn|)
]

(39)

3.3.1. LASSO

pLassoλ (|d|) = λ|d|
Through [5], it is revealed that Lasso tends to detect a ”cloud” of

small change points around an actual change. Moreover, due to the
bias introduced by the Lasso, once the change points are obtained,
another step is required to re-estimate the mean within a segment.
The Lasso regularization possesses continuity but the estimates are
biased, because in addition to small, large-amplitude coefficients are
”shrunk” too.

3.3.2. SCAD

The Schwarz-like regularization yields unbiased estimates, but the
solution is not continuous with respect to y. Hence, small variations
of y or λ may result in large variations of d̂ (this happens when one
is uncertain whether to set the coefficient to 0 or not). On the other
hand, the Lasso regularization possesses continuity but the estimates
are biased, because in addition to small, large-amplitude coefficients
are ”shrunk” too.

An estimator which reduces the bias of group Lasso and can
afford a convergent optimization solver is required, with three prop-
erties of Unbiasedness, Sparsity and Continuity. The correspond-
ing algorithm is based on iterative instantiations of weighted group

Lasso, which is capable of enhancing the sparsity of the solution,
and thus improving the precision of the detected change points.

To overcme these limitations, the following Smooth Clipped Ab-
solute Deviation (SCAD) regularization can be used with a > 2 [6]

pSCADλ (|d|) =


λ|d|, if |d| ≤ λ
− d

2−2|d|aλ+λ2

2(a−1)
, if λ < |d| ≤ aλ

λ2

2
(a+ 1), |d| > aλ

(40)

Therefore, now given a provisional estimate of {dn}Nn=0 at it-
eration j-1, namely {d̂(j−1)

n }Nn=0, the iterated approximation would
be:

{d̂(j−1)
n }Nn=0 = argmin{dn}Nn=0

[
1
2
‖y −Xd‖22 +

N∑
n=1

pSCAD
′

λ

(
‖d̂(j−1)
n ‖2

)
‖dn‖2

] (41)

for j = 1, ...., J . Since, the weights, pSCAD
′

λ

(
‖d̂(j−1)
n ‖2

)
are

non negative constants, the cost in (41) is convex and can be mini-
mized using the block-coordinate descent algorithm. The role of the
weights is to ”avoid penalizing terms that, most likely, are non-zero”.

3.4. Results and Experiments

For implementing the above mentioned approaches, two signals
were chosen :

• A synthetically generated signal :
3 cosine signals of different frequencies were generated and
concatenated in increasing order.

• A speech signal :
A speech signal of utterance Oh my god sampled at sampling
frequency 16000 kHz was taken.

Fig. 7. Cosine Signal

Fig. 8. Speech Signal



For the entire generated synthetic signal and a segment of the
speech signal, the λ∗ is obtained first. Then, ranging λ from 0 to
1.2λ∗,TV-AR coefficients and the piece-wise constant segments are
obtained. The obtained values are plotted and compared finally.

For the synthetic signal generated, the obtained plots for the
range of λ′s for both Lasso and SCAD regularization parameters
are:

In each plot, the x-axis is the time axis and 8 TV-AR coefficients
are plotted against it, where each of the 8 coefficients is plotted with
different color.

In Figure 9, the TV-AR coefficients of order 8 for the synthetic
signal generated are obtained for λ = 0, λ∗/6, λ∗/2 and 1.2λ∗

respectively from top to bottom & the left image in each row is
for Lasso regularization, where as right image in each row is for
SCAD regularization.

Fig. 9. 8th order TV-AR coefficients of generated signal

In Figure 10, the TV-AR coefficients of order 8 for the part of the
speech signal are obtained for λ = 0, λ∗/6, λ∗/2 and 1.2λ∗ respec-
tively from top to bottom & the left image in each row is for Lasso
regularization, where as right image in each row is for SCAD reg-
ularization.

Fig. 10. 8th order TV-AR coefficients of speech signal

To see how the group sparsity varies with the values of lambda,
for the any signal, It has been tested over the generated synthetic
signal and result is :
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Fig. 11. λ versus Group Sparsity of the difference vectors
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