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Abstract

The perception of speech and audio is one of the defining features of humans. Much of

the brain’s underlying processes as we listen to acoustic signals are unknown, and sig-

nificant research efforts are needed to unravel them. The non-invasive recordings cap-

turing the brain activations like electroencephalogram (EEG) and magnetoencephalo-

gram (MEG) are commonly deployed to capture the brain responses to auditory stim-

uli. But these non-invasive techniques capture artifacts and signals not related to the

stimuli, which distort the stimulus-response analysis. The effect of the artifacts be-

comes more evident for naturalistic stimuli. To reduce the inter-subject redundancies

and amplify the components related to the stimuli, the EEG responses from multiple

subjects listening to a common naturalistic stimulus need to be normalized. The cur-

rently used normalization and pre-processing methods are the canonical correlation

analysis (CCA) models and the temporal response function based forward/backward

models. However, these methods assume a simplistic linear relationship between the

audio features and the EEG responses and therefore, may not alleviate the recording

artifacts and interfering signals in EEG. We propose novel methods using machine

learning advances to improve the audio-EEG analysis.

We propose a deep learning framework for audio-EEG analysis in intra-subject

and inter-subject settings. The deep learning based intra-subject analysis methods

are trained with a Pearson correlation-based cost function between the stimuli and
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EEG responses. This model allows the transformation of the audio and EEG features

that are maximally correlated. The correlation-based cost function can be optimized

with the learnable parameters of the model trained using standard gradient descent-

based methods. This model is referred to as the deep CCA (DCCA) model. Several

experiments are performed on the EEG data recorded when the subjects are listen-

ing to naturalistic speech and music stimuli. We show that the deep methods obtain

better representations than the linear methods and results in statistically significant

improvements in correlation values.

Further, we propose a neural network model with shared encoders that align

the EEG responses from multiple subjects listening to the same audio stimuli. This

inter-subject model boosts the signals common across the subjects and suppresses

the subject-specific artifacts. The impact of improving stimulus-response correlations

are highlighted based on multi-subject EEG data from speech and music tasks. This

model is referred to as the deep multi-way canonical correlation analysis (DMCCA).

The combination of inter-subject analysis using DMCCA and intra-subject analysis

using DCCA is shown to provide the best stimulus-response in audio-EEG experi-

ments.

We highlight how much of the audio signal can be recovered purely from the non-

invasive EEG recordings with modern machine learning methods, and conclude with

a discussion on future challenges in audio-EEG analysis.
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Chapter 1

Introduction

1.1 Motivation

Since scientific methods started logging into human’s activities, reverse-engineering

the human brain has been a fascinating topic for research and understanding.

The brain performs multiple jobs, conscious and subconscious, and processes multi-

modal information at hierarchical levels of abstractions simultaneously. All the sen-

sory information are processed and combined to extract information from the envi-

ronment. However, very little is known about these hierarchical processing streams

of data. The existing black box model of the brain combined with the need for ad-

vancements in artificial systems have placed the study into brain processes as a key

area of research.

The brain’s properties like energy efficiency, robustness in data processing and

lack of data hunger are the major requirements of today’s data-driven machine learn-

ing models. The auditory system plays a prominent role in exploring the world

around us. Not being error-prone to reverberation effects, focusing on a particular

sound amidst multiple sound sources, robust semantic mapping of phonemes, being

1



Chapter 1. Introduction 2

able to enjoy music are few examples which prove the efficiency of our auditory sys-

tems. These properties of our auditory systems attract more research into decoding

them.

Recent technological advancements allow capturing the electromagnetic signals

directly from the brain. The neurons are the basic processing elements in the brain.

Each neuron generally fires at a rate of 100 Hz and the composition of these firings

form higher frequency signals. The current brain recording techniques either pro-

vide considerable temporal resolution or spatial resolution. The techniques like elec-

troencephalography (EEG) and magnetoencephalography (MEG) can record the brain

activity at sampling rates as high as 8 kHz. The temporal resolution allows us to cap-

ture processes with high precision. However, as they are captured from the scalp,

they lack the spatial resolution needed to locate the brain regions involved. Tech-

niques like functional MRI (fMRI) provide considerable spatial resolution in the order

of millimeters but lack the requisite temporal resolution with sampling rate ranging

in seconds. The invasive techniques like electrocorticography (ECoG) provides high

temporal resolution upto 10 kHz and spatial resolution in the order of millimeters, but

it needs electrodes to be inserted into the brain. Depending on the purpose, suitable

techniques to capture the brain signals are deployed.

To study the brain’s response for an auditory stimulus, an auditory stimulus is

provided to the subject and its corresponding brain signals are recorded to model the

relationship between the two signals. As the stimuli and responses are temporal in

nature, we need to use recording techniques with significant temporal resolution. The

EEG and MEG are the two prominent brain signals recording techniques used in these

experiments.

The EEG is preferred to MEG as EEG is more portable and easy to record. The

EEG recording is inexpensive and takes less time to set up. But, as the recordings
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are captured from the scalp, the response component is collected along with other

artifacts. While the brain is processing a presented stimulus, it simultaneously per-

forms various other tasks like maintaining the subject’s internal systems. All these

processes are unrelated to the presented stimulus, but still get captured by the EEG.

And some stimuli induced responses also get smeared out while propagating to the

scalp. Therefore, the EEG recordings contain significant amount of signals that are not

related to the stimuli presented to the subject. These signals in the EEG recordings are

considered as noise. In this regard, the EEG recordings have SNR < −20dB[1]. An-

other shortcoming of EEG is being sensitive to artifacts like eye blinking and muscular

movement.

Initial studies have focused on event related potentials (ERPs) [2]. An ERP tries

to model the brain’s response to short term auditory stimuli, stimuli that last less

than 2 seconds. They alleviate the effect of noise by repeating the same experiment

multiple times. By repeating the experiment, all the brain recordings collected for a

particular stimuli can be aggregated and averaged. It helps to remove all the processes

unrelated to the stimuli from the EEG recordings. This facilitates the study of sensory

and cognitive processes of the auditory brain [3]. The short span of the stimuli makes

it possible to repeat the experiment multiple times for multiple subjects. The ERP

methods have become the standard technique for scientific and medical studies [4, 5].

However, the ERP methods assume a highly simplistic environment. The neces-

sity to repeat an experiment multiple times make the ERP methods inefficient for a

natural long stimuli. Hence, developing single-trial based decoding algorithms are of

profound interest.

Studying the relationship between various stimuli features and their correspond-

ing EEG recordings help us to decode the brain computations on naturalistic stimuli.

An auditory stimulus contains diverse amounts of information. It contains acoustic
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information like pitch, rhythm, timber and spectral information. A speech audio’s

acoustic information contains speaker’s voice, rate of speech, accent and ambience.

Semantic data like context, purpose, emotional state, dialect and the speaker’s vocab-

ulary are also embedded in a speech audio. A musical audio contains details about the

vocals, genre, instruments and tempo. The brain perceives all these details from the

sounds in real time and evokes myriads of responses. Understanding how the brain

processes all these information is the underlying theme of auditory neuroscience.

The successful single trial decoding techniques assume a linear and time-invariant

impulse response between the stimulus and response. These earliest methods in this

direction are referred to as the temporal response function (TRF) [6]. They rely on

a reverse correlation/system identification framework. The linear TRF models are

prominently used for two types of models. A "forward model" predicts the EEG re-

sponse from the audio, whereas a "backward model" uses the neuronal response to

predict the features of the audio signal. As forward models describe the encoding ac-

tion of brain from stimulus to EEG, they come under the "encoder" models. Similarly

backward models try to decode the stimulus for a particular EEG, hence they come

under the "decoder" models.

The TRF models’ performance is typically quantified using the Pearson correlation

between the predicted signal and the true signal. The low SNR in the EEG gives rise

to correlation values in the range of 0.1 - 0.2 [6]. EEG signals contain all the brain’s

activity along with the stimuli effects. Thus, only a fraction of the variance in the EEG

can be explained by the external stimuli.

Apart from the encoder and decoder models, there exist hybrid models. Let the

stimuli be represented as S and the corresponding response as R. Let f represents

a linear transform on S. And g represents a linear transform on R. The modelling

process attempts to find the two transforms such that the final representations have
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optimal performance metric. They aim to bring f(S) and g(R) correlate with each

other. They follow a data-driven approach (ridge linear regression). A linear forward

model learns the optimal f assuming g to be an identity function. A linear backward

model assumes f as an identity function and tries to find the optimal g. A hybrid

model tries to find the both functions f and g that maintain only the related compo-

nents in both signals. The hybrid models’ transformed stimuli f(S) can also be used

to predict the transformed response g(R). But the downside is that they are difficult

to interpret. These models describe the sensory-dependent parts of brain activity, and

the stimuli information they encode [7, 8, 9, 10].

Canonical correlation analysis (CCA) is a prominent hybrid model used in the

naturalistic stimuli setting. It projects two signals to a domain that maximizes the

correlation between the two signals [11, 12]. It finds a linear transform on each of

the signals that maximizes the variability relevant to the other signal. Recently, the

linear CCA method has been successfully applied in forward and backward models in

auditory EEG analysis using a combination of linear transforms and convolutions [13,

14]. However, the model is still based on linear assumptions.

All these models can be trained specifically for each subject separately (subject-

specific models), or trained on some subjects and tested on other subjects (subject-

independent models). The subject-independent models do not need the tiresome

process of collecting the ground-truth EEG data for each new subject. But, since ev-

ery person’s brain responses are different, the subject-independent models perform

poorly compared to the subject-specific models [15]. A drawback to data-driven sin-

gle trial analysis methods for naturalistic stimuli is the lack of data. As it is tedious

to repeat the experiment multiple times for a single subject, aggregating information

from multiple subjects is one way to increase the available data.
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The linear CCA can be performed only on two signals at a time. In order to ag-

gregate the EEG responses from multiple subjects, multiway CCA (MCCA) or gener-

alized CCA [16, 17, 18] has been proposed. As all the EEG responses correspond to

the same auditory stimulus, some components must be common across the EEG re-

sponses [19]. The application of multiway CCA (MCCA) for EEG mapping has shown

improvements over the intra-subject linear CCA [14]. But, both the models, CCA for

each subject and MCCA normalization of multiple subjects’ EEG, assume a simple

linear relationship between the stimuli and responses.

1.2 Related Prior Work

One of the earlier efforts to extend the decoding to longer naturalistic stimuli condi-

tions is performed by Lalor et al. [20]. The AESPA (Auditory Evoked Spread Spec-

trum Analysis) [6] method stochastically modulates the amplitude of an auditory car-

rier stimulus and tries to estimate the linear impulse response (of the brain) from the

recorded EEG recordings. Using a sliding window of auditory amplitude values and

the measured neural data, the impulse response is determined using least-squares

estimation (linear regression). Aiken et al. [21] have shown that the stimuli features

from 4 - 16 Hz play major role for speech intelligibility.

Recent studies [22, 23] have shown that the EEG recordings clearly track the at-

tended speaker’s speech envelope in a listening experiment with more than one speak-

ers. The problem of extracting the attention related information directly from the

brain is generally referred to as the auditory attention decoding (AAD) task [10].

Most of the AAD algorithms follow a stimulus reconstruction approach, i.e., back-

ward models.

Previous research has shown auditory space encoding in the subcortical neurons [24],
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but less is known about the cortical representation of the auditory space. Being able

to locate and attend to a particular auditory source among multiple sources is a com-

plex process managed by the brain. It is important to consider the effects of hierar-

chial attentional mechanisms on cortical responses. In the context of cocktail party,

the low-frequency cortical oscillations predominantly synchronize with the temporal

structure of the attended sound stimulus, and less with the unattended source [25].

Decoding these processes is highly useful for developing cognitively steered devices.

Lauteslager et al. [26] has shown that the decoding of attention in a cocktail party

setting, from single-trial EEG, is robust and pertinent to the task. It also addresses

the usage of all the 128 channels data from EEG recordings. All the 128 channels are

considered as their relative contribution is weighted by the model automatically.

Bednar et al. [27] showed that the attended source’s position trajectory can be reli-

ably reconstructed from both delta signals’ phase and alpha signals’ power of EEG. It

is even found to be robust to distracting stimuli. In EEG recordings, the delta waves

are the signals with a frequency of 3 Hz or below. Alpha waves have a frequency

between 7.5 and 13 Hz.

Though the position of unattended source is not tracked using the cortical rep-

resentation, delta phase of the EEG tracks it weakly [27]. It is also shown that the

trajectory reconstruction method can also be used to decode the selective attention in

a single-trial context. However, its performance is found to be inferior to envelope-

based decoders.

It has been shown that the EEG recordings below 16 Hz robustly track the speech

dynamics [20, 28]. Though invasive methods like ECoG reflect the same properties in

high gamma power (HGP) waves (70 - 150 Hz), it is unclear whether the HGP from

EEG show similar or complementary properties to that of the low frequency waves.

Typically, the high-frequency content of scalp-recorded EEG is filtered out because
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they are low pass filtered by the skull [29]. They get smeared out by the dura and cere-

brospinal fluid [30]. Hence, the high-frequency content has low signal-to-noise ratio.

This poor SNR, low spatial resolution and high sensitivity to muscle artifacts [31] re-

sulted in relatively few studies focused on HGP in EEG.

Synigal et al. [32] shows that HGP also offers speech tracking and attention de-

coding in the context of cocktail party. It also shows that the HGP and low frequency

signals are sensitive to different characteristics of the stimuli. And combining them

improves speech tracking for several subjects. It proves that tracking the HGP, along

with the low frequency content, is beneficial for cognitively steered hearing devices.

O’Sullivan et al. [33] have successfully shown that the attention to both congruent

and incongruent audiovisual speech can be decoded. It is mentioned that the parieto-

occipital alpha power can be used to determine whether a subject is listening to a

speaker’s face or not.

Broderick et al. [34] has shown that the EEG recordings reflect the semantically

surprising elements in the stimuli in the order of milliseconds. As we have evolved

to live among natural sounds, Zuk et al. [35] shows that the synthesized sounds’ re-

sponses get poor classification accuracy compared to natural speech or music stimuli.

The stimulus-response modelling offers insight into perceptual processes within

the brain, giving it the potential for practical use in Brain Computer Interfaces (BCI).

Cheveigné et al. [9] try to quantify such models’ performance using metrics like match-

mismatch, correlation, sensitivity and classification error rate. The match-mismatch

task quantifies the classification efficiency of the models. Thus, it is directly applicable

to BCI applications.
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In an AAD problem, match-mismatch classification serves as a considerable met-

ric. Final representations are obtained for the EEG response, and the correlation coef-

ficient between each speaker’s representation and the EEG’s representations is calcu-

lated. This is estimated over a decision window length of τ seconds. Generally, the

model’s performance depends on the decision window length.

Machine learning methods for the extraction of information from EEG can have

a significant impact on both understanding and applications like BCI . Therefore,

it is quite important to extend the linear models using the recent advancements in

machine learning (like deep learning [36]) for brain signal decoding and single-trial

analysis.

Identifying the P300 wave in EEG signals using Convolutional Neural Networks

(CNNs) is one of the first works in this direction [37]. The recent years have seen

the use of deep learning for several brain mapping tasks like computational memory

prediction [38], driver’s cognitive state prediction [39], and the brain activity recon-

struction for visual stimuli [40].

A review of several efforts in decoding brain activity using deep learning tech-

niques is given in Zheng et al. [41]. Kriegeskorte et al. [7] discuss various aspects

in the interpretation of the encoder and decoder models. They discuss the simplistic

linear assumption of the models and the single-model-significance fallacy. The single-

model-significance fallacy argues that evidence of variance explainability must not be

interpreted in the favor of the model. It says that it does not represent the brain com-

putation, but only a statistical tool to measure the dependency between the stimuli

and their responses.

In auditory tasks, EEG recordings have shown to contain rhythm information in

music perception using classifiers based on deep networks [42]. A recent work by

Das et al. [43] has shown that auditory attention decoding in the perception of noisy
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speech can also be improved by deep learning techniques. In multi-speaker cocktail

party scenarios, Deckers et al. [44] showed that neural networks are capable of iden-

tifying the attended speaker. A Dense Neural Network (DNN) based model for EEG-

based speech stimulus reconstruction was proposed by Taillez et al. [45]. The deep

learning models are able to capture the non-linear relationship between the stimulus

and response. Thus, it has been showed that deep learning is a feasible alternative to

linear decoding methods. Liu et al. [46] proposed a deep version of the linear MCCA

for image-EEG data which is similar to the DGCCA model [47] in the literature.

Ciccarelli et al. [48] implements an end-to-end Convolutional Neural Network

(CNN) network classification approach to decode the speaker the subject is trying to

attend. This approach outperformed linear methods for a decision window of 10 sec-

onds. Vandecappelle et al. [49] have used CNN layers to extract the locus (left/right)

of the auditory attention for the scenarios without access to each speaker’s stimuli.

CNNs have shown encouraging results in the domain of EEG classification for seizure

detection [50, 51], sleep stage classification [52] and depression detection [53, 54].

1.3 Key contributions and contrast with prior literature

The linear CCA is one of the popular approaches in the context of EEG-audio data as

SRC (Stimulus Response Correlation). All the popular analysis methods rely on the

highly simplistic assumption of a linear relationship between stimulus and response.

The linear CCA [13] has been extensively used for modelling a subject’s stimulus-

response relationship. To address the problem of lack of data, linear MCCA [14] is

introduced. The linear MCCA aggregates the EEG responses from multiple subjects

to a common stimulus and linearly transforms them such that each subject’s stimulus-

response correlations improve.
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We propose deep learning based models for the existing linear models in this con-

text of audio-EEG data. The deep models for the CCA and MCCA are proposed in

the context of audio-EEG data. Andrew et al. [55] has proposed a deep model of CCA

that outperforms the linear CCA on image data under low noise conditions. The sig-

nificant amount of noise in EEG recordings makes it complicated to directly deploy

the deep CCA for audio-EEG data. The dropout strategy [56] tries to alleviate the

impact of noise partly. We show that leaky-ReLU based non-linearity at the output of

the networks to be more robust to noise. We address the usage of CCA models (linear

and deep) in Chapter 3 on "Intra-Subject Analysis".

The linear MCCA [14], as a denoising step for multiple subjects EEG data, is shown

to provide better representations compared to the standard linear CCA model alone

for each subject. We propose a deep variant of the MCCA for the denoising step.

A deep MCCA model is developed such that it denoises the EEG recordings signifi-

cantly better than the linear and other existing deep variants of MCCA. Our proposed

deep MCCA model is a generalized version of the DGCCA model [47], and it is tested

in the context of audio-EEG data. We use a reconstruction approach with a shared

hidden representation to derive the deep transform that aligns multiple EEG record-

ings. These analyses is referred to as "Inter-Subject Analysis", and detailed in Chapter

4.

We also illustrate the combinations of linear/deep MCCA with the linear/deep

CCA methods for audio-EEG relationship analysis in speech and music listening tasks.

1.4 Organization of the thesis

The thesis is organised as follows. Chapter 2 sets the mathematical background for the

models discussed in this work along with the datasets these models are experimented
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with. Chapter 3 discusses linear and non-linear intra-subject stimulus-response meth-

ods. Chapter 4 explores the linear and non-linear inter-subject methods. Chapter 5

discusses an extension to the work which includes the temporal information of the

signals. This chapter concludes the discussion with a summary, limitations of the

study and future directions for this work.



Chapter 2

Background and Setup

As discussed earlier, audio-EEG analysis can be performed using one of the three

models : forward, backward and hybrid. The most popular mathematical models for

forward and backward analysis come under the name Temporal Response Function

(TRF). The linear CCA is the most prevalent hybrid model for each subject’s audio-

EEG response analysis. The linear MCCA is a technique to aggregate multiple sub-

jects’ EEG responses to a common subspace such that each subject’s intra-subject anal-

ysis benefits from the accumulated EEG responses for a common stimulus.

2.1 Mathematical Background

2.1.1 Linear Regression and Temporal Response Function

Let a stimulus x [t] be provided to a subject and its corresponding EEG response is

recorded as y [t, c]. The stimulus x [t] represents the 1D temporal audio envelope and

the response y [t, c] represents the C channel EEG signals. The stimulus, x [t], and the

response, y [t, c], are represented at same sampling frequency.

13
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The temporal response function (TRF) is a prominently used linear model for mod-

elling the forward and backward relationships between the stimulus and response. A

TRF model approximates the relation between the stimulus and response as a convo-

lution with an impulse response.

The TRF considers a context window of [τmin, τmax] for the input at each instant.

Let τmax − τmin = τwindow. Hence, if the signal is of T × d dimensions, then the input

is transformed to a signal of shape T × dτwindow, and the modelling is performed on

this new input representations [57]. This can be called as a time-lagged version of the

input.

The stimulus can be represented either as the temporal envelope, x [t] or any pro-

cessed features. Therefore, the stimulus is denoted as X ∈ RT×dS where dS = 1 for

the audio envelope representations and differs if any other processed features are uti-

lized. The EEG response data can also be represented using either the same number

of channels used for their collection or can be processed and projected onto a differ-

ent subspace. Therefore, Y ∈ RT×dR where dR = C if the EEG is not dimensionality

reduced.

Forward Model

A forward model tries to predict the EEG response from given audio stimulus. The

input to the model is the time-lagged version of the stimulus x [t]. The time-lagged

stimuli is represented as X ∈ RT×dS where dS = τwindow, and the response is repre-

sented as Y.

The relation between the stimulus X and the response Y is assumed to be linear,

Y = XF (2.1)
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The model is learnt using ridge linear regression as :

F = (X>X + λI)−1X>Y (2.2)

where I ∈ RdS×dS is an identity matrix and λ is the regularization parameter.

Backward Model

A backward model tries to reconstruct the provided audio stimulus from the EEG

response. The input to the model is the time-lagged version of the response y [t, c].

It can be represented as Y ∈ RT×dR where dR = Cτwindow, C is the number of EEG

channels and τwindow is the context window. The stimulus is represented as X.

The relation between the stimulus X and the response Y is assumed to be

X = YG (2.3)

The model is learnt using ridge linear regression as :

G = (Y>Y + λI)−1Y>X (2.4)

where I ∈ RdR×dR is an identity matrix and λ is the regularization parameter.

These models for relating the continuous stimuli to their neural signals are built

into a publicly available MATLAB toolbox named as "mTRF Toolbox" [57].

2.1.2 Linear Canonical Correlation Analysis

For a pair of multi-variate datasets, Canonical Correlation Analysis (CCA) [11] finds

the optimal linear transforms, for both the stimulus and response, that maximize the

Pearson correlation between the transformed vectors.
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Let, x and y denote dS and dR dimensional vectors respectively. Let, d denote the

dimension of the desired canonical subspace that maximizes the correlation between

transformed vectors. For example, if d = 1, let u1, v1 denote the pair of vectors which

project x and y respectively into 1-dimensional space. Now, the problem is to find

u1 and v1 such that the correlation coefficient ρ between x′ = u>1 x and y′ = v>1 y is

maximized. The problem can be formulated as maximizing

ρ(u1,v1) =
E[(x′ − E[x′])(y′ − E[y′])]√

E[(x′ − E[x′])2] · E[(y′ − E[y′])2]
(2.5)

Without loss of generality, let E[x] = 0 and E[y] = 0. Then, the correlation coefficient

becomes

ρ(u1,v1) =
E[x′y′]√

E[(x′)2] · E[(y′)2]

=
E[u>1 xy>v1]√

E[u>1 xx>u1] · E[v>1 yy>v1]

=
u>1 Cxyv1√

u>1 Cxxu1v>1 Cyyv1

(u∗1,v
∗
1) = argmax

u1,v1

ρ(u1,v1)

(2.6)

where, Cxy = E[(x − µµµx)(y − µµµy)>] and Cxx, Cyy are the auto-correlation matrices of

x, y respectively.

Generalizing the problem for d := k(> 1) and constraining the denominator to 1,

we can calculate the optimum transforms (Ud,Vd) as:

(U∗d,V
∗
d) = argmax

Ud,Vd

Trace(Ud
>CxyVd)

subject to Ud
>CxxUd = Vd

>CyyVd = Id

(2.7)
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where Id is identity matrix of shape d × d, the matrices Ud = [u1,u2, · · · ,ud] ∈ RdS×d

and Vd = [v1,v2, · · · ,vd] ∈ RdR×d are the linear transforms for x and y respectively.

Let,

T , C−1/2xx CxyC−1/2yy (2.8)

The solution to the CCA problem (U∗d and V∗d) are given as the first d left and right

singular vectors of the matrix T and the maximum correlation is given by the sum of

the top d singular values of T [55].

2.1.3 Linear Multiway Canonical Correlation Analysis

The multiway CCA (MCCA) generalizes the linear CCA to multiple (more than two)

multivariates. The linear MCCA finds a linear transform for each random variable,

such that all the projections are maximally correlated to each other [14, 19].

Let us consider N random multivariates, xn ∈ Rdn , for n = 1 to N . And DN =∑N
n=1 dn. Let us project all the N random variables xn onto a 1D subspace. Let vn ∈

Rdn denote the transform vector that projects xn onto the common subspace.

The MCCA finds the transform vectors {vn}Nn=1 such that the inter-set correlation

(ISC) among the projections is maximum. The ISC is defined as

ρISC =
1

N − 1

rB
rW

(2.9)

where rB is the between-set covariance and rW is the within-set covariance. The factor

N−1 scales the correlation to be ρISC ≤ 1. The between-set and within-set covariances

are obtained as

rB =
N∑
i=1

N∑
j=1,j 6=i

v>i Rijvj , rW =
N∑
i=1

v>i Riivi
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where Rij ∈ Rdi×dj is the cross-covariance matrix between xi and xj . Each element

of the cross covariance matrix is obtained as [Rij]kl =
(
xk
i − x∗i

)> (
xl
j − x∗j

)
with x∗i as

the mean of xi.

The cross-covariance matrices among all the views are aggregated to form the

block matrix R ∈ RDN×DN such that [R]ij = Rij . By considering only the autocovari-

ance matrices, a block-diagonal matrix D ∈ RDN×DN is formed such that [D]ii = Rii.

The optimum transform vectors {vn}Nn=1 are obtained by solving the eigen equa-

tion [19]:

Rv = λDv (2.10)

The eigenvector v ∈ RDN×1 with the maximum eigenvalue contains the optimum

transform vectors {vn}Nn=1.

To solve the eigen equation 2.10, we can either find the eigenvectors for the matrix

D−1R, or follow the two-step solution as discussed by Parra [19]. The two-step solu-

tion first decomposes the block-diagonal matrix D into an orthonormal matrix U and

diagonal matrix Λ as

D = UΛU> (2.11)

Since the block-diagonal matrix D elements are covariance matrices of each multi-

variate, this decomposition is similar to performing PCA on each xn separately. It is
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analogous to whitening each of them. The eigen equation can be rewritten as:

Rv = λDv (2.12)

Rv = λUΛ1/2Λ1/2U>v (2.13)

Λ−1/2U>Rv = λΛ1/2U>v (2.14)(
Λ−1/2U>R

) (
UΛ−1/2Λ1/2U>

)
v = λ

(
Λ1/2U>v

)
(2.15)(

Λ−1/2U>RUΛ−1/2
)
ṽ = λṽ (2.16)

R̃ṽ = λṽ (2.17)

Multiplying the concatenated whitening transforms UΛ−1/2 on either side of the ma-

trix R produces the matrix R̃. Hence, R̃ is the covariance matrix of concatenated

whitened multivariates. Therefore, to solve the eigen equation 2.10, the eigenvectors

U and the eigenvalues Λ are obtained by eigen decomposition of D (or PCA of each

xn), and Ṽ by eigen decomposition of R̃. And the final eigenvectors are obtained as

V = UΛ−1/2Ṽ.

The first column of this transformation matrix V is considered for projecting the

multivariates onto a 1D subspace. For a higher dimensional subspace d (> 1), the first

d columns of V (because they correspond to the top d eigenvalues) are considered.

Our work primarily focuses on the hybrid CCA models. We discuss the linear

hybrid models extensively used for audio-EEG data and the deep models we propose

which outperform the linear models.

2.2 Datasets

We use audio-EEG recordings from two datasets, speech and music. The speech-

EEG dataset consists of subjects’ EEG recordings while they were listening to speech
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stimuli (an American audiobook). The music-EEG dataset contains EEG recordings

of the subjects listening to music (Hindi popular songs).

2.2.1 Speech - EEG dataset

This dataset contains pairs of speech stimuli and their corresponding recorded EEG

responses. This is an open dataset and was recorded by Liberto et al. [25]. The subjects

were presented with snippets of a popular American novel read by a male speaker.

All the snippets were of same length (≈ 155 seconds). All the stimuli were presented

monophonically in dichotic fashion at a sample rate of 44, 100 Hz. While the subjects

were listening to the audiobook, their EEG data were recorded from 128 electrodes

at a sampling rate of 512 Hz using Biosemi Active Two system. The EEG data were

preprocessed to remove the phase-distortions [25] and downsampled to 128 Hz. This

dataset is chosen for experimenting our methods for a speech-EEG setting.

For the experiments, we have collected 20 trials of 8 subjects from the dataset. The

preprocessing steps proposed by Cheveigné et al. [13] are followed. The EEG data

are downsampled to 64 Hz. They are further detrended to exclude outliers using

a robust detrending routine [58]. Channel-specific noise are suppressed using the

STAR algorithm [59]. Both the detrending and denoising algorithms are used from

the noise suppression tools [58]. To suppress the 50 Hz and its harmonics, the EEG

data are convolved with a boxcar window of duration 20ms. Then, they are finally

passed through a band-pass filter of passband 0.1− 12 Hz.

The stimuli envelopes are squared and smoothed by passing through a square

window filter of width 15.6 milliseconds. Then, they are downsampled to 64 Hz and

followed by a cubic-root compression.

These final preprocessed 1D stimuli and 128D EEG data are used for the further

intra-subject and inter subject analysis methods.
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2.2.2 Music - EEG dataset (NMED-H)

The Naturalistic Music EEG Dataset - Hindi (NMED-H) dataset is used for the anal-

ysis on a music-EEG dataset. It is an open source dataset, and an extension to the

NMED-T dataset [60]. 4 versions of 4 full length Hindi pop songs are the music stim-

uli provided to subjects. The four versions are normal, reversed, phase-scrambled

and measure-shuffled. In the normal version, the songs are played in their natural

order. In the reversed version, each song is played in temporally reverse order. The

samples are shuffled and played in the measure-shuffled version. Each stimulus is of

approximately 4.5 minutes in length.

The EEG recordings are recorded from 48 adults listening to a subset of 4 stimuli

from 16 naturalistic music stimuli. Each subject is provided with 2 trials of 4 stimuli,

and each stimulus is provided to 12 subjects. The stimuli are presented with a sam-

pling frequency of 44, 100 Hz. The EEG are recorded at a sampling frequency of 1

kHz with 125 electrodes at the scalp. The EEG data are recorded using the Electrical

Geodesics, Inc. (EGI) GES 300 platform. Each recording is filtered between 0.3-50 Hz

using EGI Net Station zero-phase filters and downsampled to 125 Hz. NMED-H con-

sists of three differently preprocessed EEG data. We use the “Clean EEG” recordings.

Here, the EEG data are cleaned and aggregated on a per-stimulus, per-listen basis.

The details of data acquisition and preprocessing are given in Blair Kaneshiro [61].

From the 1D stimuli envelopes, acoustic features are extracted as discussed by

Gang et al. [62]. Music Information Retrieval (MIR) toolbox, Version 1.7.2 [63] is used

to extract the acoustic features. As proposed by Alluri et al. [64], 20 stimuli features

are extracted in 25ms analysis windows with a 50% overlap between frames [64, 65].

This yields a final sampling rate of 80 Hz for the stimuli features. The 20 stimuli

features are: zero crossing rate, spectral centroid, high/low energy ratio, spectral

spread, spectral roll-off, spectral entropy, spectral flatness, roughness, RMS energy,
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broadband spectral flux, and spectral flux for 10 octave-wide sub-bands.

The principal component analysis (PCA) is performed on the 20D features of each

stimulus to obtain a 1D representation (PC1). The two individual features, root mean

square (RMS) and spectral flux, along with the PC1 are chosen to obtain a 3D rep-

resentation for the stimuli. The RMS and spectral flux features reflect the amplitude

and timbre of the stimuli. As a result, the EEG responses are also re-sampled to the

sampling rate of the acoustic features (80 Hz).

2.3 Experiments Setup

For the speech-EEG dataset, the preprocessed 1D stimuli envelopes and 128D EEG

responses are used for the experiments. For the NMED-H dataset, the 1D stimuli

envelopes and each dimension of the 3D preprocessed stimuli are used with the 125D

Clean EEG recordings.

From the speech dataset, stimulus-response data of 8 subjects are considered to

perform the experiments. Each subject’s data contains 20 sessions with each session

of approximately 160 seconds. For all the methods, 20 cross-validation experiments

are performed with 18 sessions used for training, one session for validation and the

remaining session for testing. As the sampling rate is 64 Hz, the approximate number

of instances for the linear/deep model training per subject is about 18∗64∗160 ≈ 185k.

These 6 sets of stimulus-response data with a common stimulus is used for both the

intra-subject and inter-subject analyses.

Two set of experiments, that is, intra-subject and inter-subject experiments, are

performed on the NMED-H dataset. For the intra-subject experiments, each subject’s

EEG responses are aggregated resulting in 48 sets of stimulus-response data. For the
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inter-subject experiments, EEG data are aggregated based on the common stimulus,

and it results in 16 sets of stimulus-response data. As each stimulus is presented

to 12 subjects, each pair of stimulus-response data, for a given stimulus, has EEG

readings from 12 subjects for the inter-subject analysis. Later, each subject’s intra-

subject analysis is performed separately.

For both the experiments, the data are split into 90− 5− 5 for training, validation

and test respectively. It results in about 155k samples for training and 8.5k samples for

testing and validation, for each subject in the intra-subject analysis, and 38k samples

for training and 2k samples for testing and validation for each subject per stimulus

for the inter-subject analysis.

2.4 Performance Metric

The performance of the analysis methods in our experiments are evaluated using two

standard metrics. Primarily, we use the Pearson correlation coefficient between the

transformed signals (EEG recordings and the stimuli) on the held-out test data.

For intra-subject analysis, the performance of linear CCA is measured using the

Pearson correlation coefficient ρ (as defined in equation 2.6), and that of deep CCA is

measured using the equation 3.1 (defined in Chapter 3) which measures the Pearson

correlation coefficient between the new representations. For inter-subject analysis,

the performance of linear MCCA is measured by the inter-set correlation of the new

representations, ρISC (as defined in equation 2.9), and that of deep MCCA (proposed

method) is measured using the sum of Pearson correlation coefficients between pairs

of the new representations (defined as ρtotal in equation 4.1 of Chapter 4).

The second performance metric is based on a classification efficiency of the aligned

versus misaligned EEG-audio segments [13]. For the classification task, fixed-length
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segments of the stimuli and corresponding EEG data are randomly selected, and the

correlation between them is measured. If the audio and the EEG segments are from

the same time instances, they must be aligned and generate a higher correlation score

than the signals that are misaligned. These correlation values are used for determin-

ing the Cohen’s d′ statistic. It serves as a sensitivity index. It quantifies the new

representations’ ability to be matched with the corresponding stimulus-response pair

based on the single value, ρ.

Let, the means of the matched and mismatched segments’ correlation coefficients

be µ1 and µ2 respectively. Let, σ2
1 and σ2

2 be their respective variances. Then, the

Cohen’s d′ statistic is measured as :

d′ =
|µ1 − µ2|√
1
2

(σ2
1 + σ2

2)
(2.18)

In order to quantify the improvements provided by our proposed methods, we

perform statistical significant tests. One-tailed pairwise t-tests are performed on the

correlation scores from baseline and proposed work. This is used to infer whether the

two methods’ results are intrinsically different.

In the next two chapters, we discuss the intra-subject and inter-subject analysis

on both the speech-EEG and music-EEG datasets. Their performances are compared

to the respective baselines using the metrics discussed above. And effects of various

architecture choices are also studied.



Chapter 3

Intra-Subject Analysis

This chapter deals with the audio-EEG stimulus response analysis for each subject.

Typically, the linear CCA is used as a hybrid model for stimulus response correlation

(SRC) analysis. A CCA model is learnt for each subject separately.

Let, an auditory stimulus S ∈ RT×dS is provided to a subject, and the correspond-

ing EEG R ∈ RT×dR response is recorded. The linear CCA model projects both the

signals onto a common subspace of d dimensions such that the final representations

are highly correlated to each other.

The deep variant of the CCA has two deep Neural Networks (DNNs). One DNN

gets the stimulus S as the input, whereas the second DNN gets the response R. Both

DNNs project their inputs onto a common subspace (of d dimensions) while they are

trained to a cost function which maximizes the correlation coefficient between the two

outputs.

In this chapter, we discuss the mathematical background of deep CCA model.

Later, we discuss our proposed deep CCA methods, and compare the results with

their linear counterparts.

25



Chapter 3. Intra-Subject Analysis 26

3.1 Deep Canonical Correlation Analysis

Andrew et al. [55] first proposed the extension to the linear transformation learning

based CCA analysis using deep learning based CCA. The two input sets of vectors

are passed through a pair of feed-forward connections to undergo a set of non-linear

transformations. The outputs of each network are the final representations on which

the correlation coefficient is computed. The neural networks are trained to maximize

the correlation cost.

Let f1(·) denotes the series of non-linear transforms performed by the first neural

network on x. Similarly, let f2(·) denotes the second network that non-linearly trans-

forms y. Let, all trainable parameters of the first neural network be denoted as θ1 and

θ2 be that of the second network.

We need to find the optimal neural networks f1(·), f2(·) with trainable parameters

θ∗1, θ∗2 respectively, such that their outputs f1(x ; θ1), f2(y ; θ2) are highly correlated.

It can be formulated as:

(θ∗1,θ
∗
2) = argmax

(θ1,θ2)

ρ (f1 (x ; θ1) , f2 (y ; θ2)) (3.1)

Let, d be the the dimensionality of the outputs of the two neural networks and a

batch of m examples from each of the (x, y) are used in training. Let Hx,Hy ∈ Rd×m

denote the matrices whose columns are the feed-forward network outputs from the

first and second network respectively.

Let, H̄x = Hx − 1
m

Hx1 and similarly, H̄y = Hy − 1
m

Hy1 denote the centred data

matrices, where 1 is an all-1s matrix of dimensionm×m. Now, the covariance matrices
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Figure 3.1: The deep CCA model. f1 takes x as input and f2 takes y as the input. They

obtain final representations as the columns of the matrices Hx and Hy trained to be

highly correlated. When applied for stimulus-response data, one network can take

stimulus features as input and the other takes response features.

of H̄x and H̄y are given as

Ĉxx =
1

m
H̄xH̄

>
x + r1I

Ĉyy =
1

m
H̄yH̄>y + r2I

Ĉxy =
1

m
H̄xH̄

>
y

(3.2)
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where r1, r2 > 0 are the small regularization parameters so that the covariance matri-

ces are positive definite and I is the identity matrix.

The total correlation between the outputs Hx and Hy can be formulated as [55]:

ρ (Hx,Hy) = trace
(
T>T

)1/2 where T , Ĉ−1/2xx ĈxyĈ−1/2yy (3.3)

It can be shown [55] that the gradient of ρ (Hx,Hy) is given by,

∂ρ (Hx,Hy)

∂Hx

=
1

m− 1

(
2∇xxH̄x +∇xyH̄y

)
(3.4)

where

∇xy = Ĉ−1/2xx UV>Ĉ−1/2yy

∇xx = −1

2
Ĉ−1/2xx UDU>Ĉ−1/2xx

(3.5)

where U, V and D are obtained from the singular value decomposition of T as T =

UDV>. Similar expression can be obtained for gradient with respect to Hy. These

gradients are backpropagated to learn the model parameters θ1 and θ2 of the two

neural networks f1(·) and f2(·). The gradient ascent update for each network’s train-

able parameters can be represented as

θt+1
j = θt

j + η
∂ρ (Hx,Hy)

∂θt
j

(3.6)

where η is the learning rate of the parameters’ updates.

Andrew et al. [55] showed that the deep CCA model improved the correlation

between left and right halves of MNIST images can be increased significantly over

the linear CCA model. This experiment is under low noise condition. We analyze

the impact of noise on the deep CCA performance. Specifically, we train and test the
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Figure 3.2: Linear and Deep CCA performance on the MNIST task for SNR varying

from 30dB to −30dB. The outputs dimension is 50.

linear CCA and deep CCA for varying amounts of noise on the left half of the image

(similar to the presence of noise in EEG recordings) and measure the performance.

This analysis in presented in Figure 3.2.

Here, we use a 50D outputs for both the linear and deep CCA. As the amount of

noise increases, the correlation drops significantly for both the models in the presence

of noise. The deep models no longer have an advantage over the linear models under

noisy conditions below −15dB. The difficulty in modeling noisy data proves to be

challenging for the DCCA methods when the deep CCA model is applied on the EEG

data. This is tackled by applying the dropout strategy in the deep CCA models. By

incorporating various levels of dropouts in the deep CCA models, we show that the

deep CCA outperforms linear CCA in the noisy conditions of EEG.
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3.2 LCCA and DCCA Methods

The LCCA methods are performed on the preprocessed 1D stimulus and dR dimen-

sional EEG recordings. The stimuli are preprocessed as proposed by the baseline

methods [13, 66]. Cheveigné et al. [13] have proposed three LCCA methods: LCCA1,

LCCA2 and LCCA3. We propose deep methods homologous to the three LCCA meth-

ods.

1) DCCA1 The 1D preprocessed stimuli feature are delayed by a time lag of 40.

This converts the stimuli features to 40D. The dR dimensions EEG data are pro-

vided to a Principal Component Analysis (PCA) that projects them onto a 40D

subspace. The 40D stimuli and response are provided to the Deep CCA model

as inputs.

2) DCCA2 Here, the dR dimensions EEG data are provided to a PCA to get pro-

jected onto a 60D subspace. Then, delays of time lag 60 are applied to the 60D

EEG data, yielding 600 dimensions. Then, a PCA transformation to 80D is ap-

plied. The 80D time delayed stimuli features and the 80D EEG data are provided

to the Deep CCA model.

3) DCCA3 The 1D preprocessed stimuli are provided to a dyadic bank of 21 FIR

band-pass filters. The filters’ characteristics (center frequency, bandwidth) are

approximately uniformly distributed on a logarithmic scale. The impulse re-

sponse duration of the 21 filters range from 2 to 128 samples (2 seconds) [13].

This transforms the 1D stimulus features to 21D representations.

The dR dimensional EEG recordings are provided to a Principal Component

Analysis (PCA) that projects them onto a 60D subspace. The dyadic FIR filter-

bank is applied on these 60D features. It transforms the 60D EEG data to 1260D.
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Figure 3.3: In DCCA1 method, the time lagged stimulus audio is provided to the Deep

CCA module whereas EEG response is provided after performing PCA. In the DCCA2

method, the outputs of the EEG data passed through the PCA go through a set of time

lags and one more PCA before being provided to the Deep CCA module. In DCCA3

method, both the audio inputs and the EEG outputs go through the filterbank of 21

FIR filters instead of delays.

A second PCA is applied to project them onto a 139D subspace. These 139D fea-

tures are the final representations for the EEG data. The 21D stimuli data and

the 139D EEG data are provided to the deep CCA model.
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Figure 3.4: LCCA3 and DCCA3 methods for the speech-EEG dataset. The responses

would be of 125D for the NMED-H dataset.

3.2.1 The Deep CCA Model Architecture

We have tried various architectures for the deep CCA model. A comparison of their

performances is detailed in the later sections. The architecture with the best results is

as follows. It has two identical DNN networks with 2 hidden layers. The first layer

has 2048 units and the second hidden layer contains 1608 units. The output layer has d

units, which varies with the dimension of the final representations. It is similar to the

deep CCA architecture proposed for MNIST data [55]. The two hidden layers have

"sigmoid" as their non-linear activation function. The output layer’s non-linearity as

"leaky-ReLU" [67] with a negative slope of 0.1 proved to be empirically better than the

other activation functions like linear and sigmoid.
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3.3 Results

The preprocessing and training-validation-test division for each subject data from the

two datasets are performed as discussed in the Chapter 3. Now, for each subject, the

CCA methods are trained and tested for the 20 cross-validation sessions. For overall

performance for the 20 sessions, instead of direct averaging the Pearson correlation

values which is mathematically incorrect, we perform a z-score based averaging as

implemented in the Statsoft software [68].

3.3.1 Speech-EEG Dataset

All three DCCA methods are compared with their linear counterparts for a randomly

chosen subject, and the results are presented in Figure 3.5. The LCCA3 method gives

the highest correlation value among all the linear models (as reported by Cheveigné

et al. [13]). Comparing the linear and deep CCA methods for the three configurations,

all the deep variants outperform the linear methods consistently for all the 20 sessions.

The DCCA3 method has shown the best correlation values (the average correlation is

around 0.4). The absolute improvement in the Pearson correlation over the best linear

model, LCCA3, for the DCCA3 method is about 9%.

The comparison of the LCCA3 and the DCCA3 methods for the 8 subjects ran-

domly chosen from the speech-EEG dataset is shown in Figure 3.6. The DCCA3

method consistently improves over the linear method in all the evaluations. The ab-

solute improvements in the correlation ranges from 3− 9% for these subjects.

We have tested the statistical significance of the improvements in correlations for

the DCCA3 method over the LCCA3 method using a pairwise t-test on each subject.

The improvement in correlation values are found to be statistically significant for 6

out of 8 subjects (p < 0.05).
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Figure 3.5: Comparison of linear and deep methods in the CCA1, CCA2 and CCA3

configurations, for a subject from speech-EEG dataset. The session indices (x-axis)

are arranged in the non-decreasing order of the correlations obtained for the LCCA3

method. The first three plots show the results for 20 sessions. The last plot shows the

average of the 6 configurations over the 20 sessions. A dropout of 10% is used in the

DCCA methods for these experiments.

3.3.2 Music-EEG Dataset (NMED-H)

For the LCCA3/DCCA3 methods, the average correlation values for the 48 subjects

from the NMED-H dataset is reported in Table 3.1. The results are reported for dif-

ferent stimuli versions - normal, shuffled, time-reversed and phase-scrambled; and
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Figure 3.6: Comparing the average correlations of LCCA3 vs DCCA3 for 8 subjects

randomly chosen from the speech-EEG dataset. A pairwise t-test is used to calculate

the statistical significance (ns implies no significance (p > 0.05), ∗ implies p ≤ 0.05),

∗∗ implies p ≤ 0.01), ∗ ∗ ∗ implies p ≤ 0.001), ∗ ∗ ∗∗ implies p ≤ 1e− 4)

stimuli features - envelope, PC1, RMS and spectral flux. The performance of LCCA3

and DCCA3 methods on the PC1 features of 48 subjects from the NMED-H dataset

is shown in Figure 3.7. The DCCA3 method provides an average absolute improve-

ments of 11% over the LCCA3 method.

To test the statistical significance of the improvements, a pair-wise t-test is per-

formed on the NMED-H dataset. It shows that the improvements provided by the

DCCA3 are statistically significant (p < 0.05).
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Stimulus feature Normal Reversed

CCA Method LCCA3 DCCA3 [t-test] LCCA3 DCCA3 t-test

Envelope 0.007 0.118 {1e-4}[3.7] -0.003 0.117 {3e-5}[4.1]

PC1 -0.020 0.077 {9e-4}[3.2] 0.012 0.105 {1e-3}[3.0]

RMS -0.004 0.087 {2e-4}[3.6] 0.008 0.101 {3e-4}[3.5]

Spectral Flux 0.008 0.102 {3e-4}[3.5] -0.004 0.113 {9e-6}[4.5]

Stimulus feature Phase-Scrambled Shuffled

CCA Method LCCA3 DCCA3 [t-test] LCCA3 DCCA3 t-test

Envelope -0.052 0.095 {4e-7}[5.3] -0.013 0.134 {3e-5}[4.2]

PC1 -0.016 0.072 {1e-3}[3.1] 0.030 0.135 {1e-3}[3.0]

RMS -0.042 0.091 {4e-7}[5.2] -0.025 0.100 {3e-5}[4.2]

Spectral Flux -0.034 0.107 {3e-7}[5.3] 0.005 0.123 {3e-5}[4.2]

Table 3.1: Average correlation values for 48 subjects from the NMED-H Dataset in

intra-subject analysis. A pairwise t-test between the LCCA3 and DCCA3 methods is

reported as {p-value}[t-value].

3.4 Hyperparameters

In this section, we analyze the impact of the hyperparameters involved in the deep

CCA models and their effect on the correlation metric.

The parameters analyzed are: dropout percentage, outputs’ dimensionality and

batchsizes. We have also tried various deep CCA model architectures. A learning rate

of 1e−3 and a batch size of 2048 are used in experiments where these hyperparameters

are not explicitly mentioned.
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Figure 3.7: Comparing the LCCA3 and DCCA3 methods for PC1 stimuli features,

of the 48 subjects from the NMED-H dataset. The correlations are arranged in the

increasing order of the LCCA3 correlation values. The last column shows the average

of the 48 subjects.

3.4.1 Dropouts

Given that the deep models are prone to over-fitting, particularly with the signifi-

cant amount of noise in the EEG data, it is found that incorporating dropouts in the

model training provides significant boost in the correlation performance (Figure 3.8).

A dropout of 5% is found to provide the best average correlation (for the 20 cross-

validation sessions). Hence, all the experiments use dropout in the deep CCA models

training.

3.4.2 DCCA3 with 5D outputs

A CCA model can be trained to obtain multiple canonical components dimensions

from the data. Similarly, the deep CCA model also can be trained for multiple out-

put dimensions. To study the effectiveness of the DCCA methods, a comparison of

the LCCA3 and the DCCA3 methods for 5 canonical correlation components is per-

formed. These results are presented in Figure 3.9. It shows the improvements in the
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Figure 3.8: For a subject from speech-EEG dataset, the average correlation as function

of the dropout regularization in the neural network. The horizontal dotted line is of

the LCCA3 model.

correlation values per dimension, for the DCCA3 for each subject in the speech-EEG

dataset. As seen in the figure, the DCCA3 method improves over the linear counter-

part for 7 out of 8 subjects.

3.4.3 Batchsize

The effect of the batch size is also analyzed for the DCCA3 model. The average cor-

relation values of 6 subjects from the speech dataset, for 20 cross-validation trials is

reported in Figure 3.10. Given the noisy nature of the data, we find that the higher

batchsizes (compared to typical choices of few hundreds in supervised classification
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Figure 3.9: Comparison between the correlation per dimension of the final represen-

tations from LCCA3 and DCCA3 with outputs of 5D.

setting) are found to improve the final correlation value. The optimal batch size on

the validation data is 2048.

3.5 Various DCCA Architectures

Various architectures for the deep CCA model are tried to study the performance of

each deep model. Number of hidden layers (L) is varied from 2 to 5 and number of

units (nL) in each layer is also varied from 256 to 10, 240. A total of 9 architectures

are explored for the deep CCA model. Their corresponding average correlation val-

ues are shown in Figure 3.11. As seen in this plot, increasing the number of layers
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Figure 3.10: Impact of the batchsize on the average DCCA3 correlation value of all the

6 subjects from speech-EEG dataset.

degrades the correlation, as the model tends to over-fit. Overall, the two hidden layer

architectures provided the best results.

This trend of decrease in performance with increase in the deep models’ depth

highlights the lack of sufficient audio-EEG data for each subject. The depth of a neural

network increases its capacity, and given the lack of large amounts of audio-EEG data

along with significant noise in the EEG, the neural networks tend to get overfit to the

noise.
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Figure 3.11: Different architectures are explored in the deep CCA models. The x-axis

denotes "number of units per layer; number of layers"

.

3.6 Remarks

Hence, we compare the DCCA methods with their linear counterparts for intra-subject

analysis on the two types of the datasets. The discussion shows the efficiency of the

deep methods to align the auditory stimuli and their corresponding EEG data. The

improvements provided by the deep methods are also shown to be statistically signif-

icant for both the datasets. Hence, the discussion shows that deep methods have the

potential to become the de-facto standard for auditory attention decoding.

From hereon, the LCCA3 and the DCCA3 methods are used for the intra-subject

analysis, and are referred to as LCCA and DCCA methods.
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Inter-Subject Analysis

This chapter deals with the aggregating EEG recordings from multiple subjects. The

linear and deep CCA models discussed in previous chapter try to obtain better repre-

sentations for each subject independently. As the machine learning models are data-

driven and obtaining more EEG data for each subject is burdensome, we attempt to

aggregate the common signals from EEG data of multiple subjects.

Linear MCCA method has proved to be successful to obtain improved representa-

tions [14]. Since all the responses are for the same stimuli, the MCCA tries to extract

the signals related to the stimuli and suppress the components that are unrelated to

the stimuli. Hence, the aggregation of multiple subjects’ EEG data and extracting

common signals among them can be referred to as a denoising step.

Let, a stimulus Ŝ ∈ RT×ds be presented to N subjects, and their corresponding

EEG responses are recorded as Rn ∈ RT×dn for n = 1, · · · , N . We can safely assume

dn = dR for n = 1, · · · , N because generally all subjects are recorded under similar

conditions. However, even if all dn are not equal, the corresponding transforms can be

modified accordingly and the final denoised representations are going to be of same

dimension for all the EEG data.

42
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To provide the temporal information, the stimulus Ŝ can be transformed into a

time-lagged version S ∈ RT×dS .

4.1 Deep Multiway Canonical Correlation Analysis

The deep version of multiway CCA [47] attempts to generalize the CCA without the

linearity assumptions of the linear MCCA.

The goal of the deep version of the MCCA is to derive optimal non-linear trans-

forms for multiple (more than two) multivariates such that the transformed vectors

are highly correlated. LetN multivariates be {xn ∈ Rdn}Nn=1 and fn(·) represent neural

network, with trainable parameters θn, that transforms xn. The architecture is shown

in Figure 4.1.

The N neural networks are trained to maximize the inter-set correlations defined

as:

ρTotal =
N∑
j=1

N∑
k>j

ρ (fj (xj ; θj) , fk (xk ; θk)) (4.1)

Comparing with Equation 2.9, the correlation cost here is the summation of pair-

wise correlation coefficients. The optimum parameters are obtained as:

(θ∗1, . . . ,θ
∗
N) = argmax

(θ1,...,θN )

ρTotal(x1, . . . ,xN ; θ1, . . . ,θN) (4.2)

The backpropagation for each network is similar to the deep CCA model, as de-

scribed in the deep CCA section 3.1. This architecture is referred to as DGCCA (Deep

Generalized CCA) [47]. In the context of EEG, we have found that our proposed

model generalizes the DGCCA and helps to provide better representations.
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Figure 4.1: The DGCCA and the Proposed DMCCA Model. N inputs are provided

to N encoders. All N encoder outputs are provided to the correlation loss and all

N decoders. The decoders’ outputs are provided to the reconstruction (MSE) loss.

The model is trained to maximize the sum of the correlation loss and negative of the

reconstruction loss.

The proposed model is referred to as DMCCA (Deep Multiway CCA). The DM-

CCA model has multiple autoencoders sharing encoded representations (N autoen-

coders for N dataviews respectively). Each random variable xn forward propagates

through the encoder part of an autoencoder, fn(θn, ·). All the encoded representations,

fn(xn ; θn) are concatenated (denoted as y), and provided to the decoders, f̂n(θ̂n, ·).

This shared encoder-decoder model allows the learning of non-linear transforms that

align the multivariates.

The model is trained such that the joint cost function of correlation is maximized

and the mean square error (MSE) in reconstruction is minimized. This cost function

is formulated as,

E = ρTotal − λ
N∑

n=1

MSE
(
xn, f̂n(y; θ̂n)

)
(4.3)
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where ρTotal is defined by Equation (4.1) and MSE(·) is the average squared recon-

struction loss. The hyperparameter λ balances the trade-off between maximizing the

correlation metric and minimizing the MSE loss while learning the model parameters.

Training the autoencoders to maximize the cost function,E, obtains their optimum

parameters (θn, θ̂n for n = 1, 2, . . . , N ).

(
θ∗1, . . . , θ̂

∗
N

)
= argmax

(θ1,...θ̂N)
E
(
x1, . . . ,xN ; θ1, θ̂1, . . . ,θN , θ̂N

)
(4.4)

The model is trained using multiple multivariates with the cost metric defined.

The correlation loss is independent of the decoder parameters θ̂n while the MSE(·) is

a function of both the encoder parameters θn and decoder parameters θ̂n.

Once the model is trained, the each random variable xn is projected using the

encoder fn(xn ; θn). After training the autoencoders, the encoders’ outputs are taken

as the final representations.

Compared to the DGCCA model [47], the additional decoders are used for incor-

porating the MSE regularization to the network’s cost function. It is found that the

ISC, among the encoders’ outputs, improves in the presence of MSE regularization.

The DGCCA can be viewed as a variant of DMCCA model with λ = 0.

4.2 LMCCA Method

The preprocessed EEG responses fromN subjects and the time-lagged version of their

time-lagged common stimuli, S, are provided to a linear MCCA model. The MCCA

model outputs the denoised representations (of dOD) for each subject’s EEG response

and the common stimuli. The MCCA model returns N + 1 linear transformation ma-

trices for the N + 1 inputs it receives. They are D1, · · · , DN ∈ RdR×dO for the N EEG
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responses and DS ∈ RdS×dO for the common stimuli.

4.3 DMCCA Method

Figure 4.2: LMCCA and DMCCA models used for inter-subject EEG analysis. Here,

D1 to DN are the linear transforms for N subjects respectively, and the DS is the linear

transform for the time-lagged stimulus. f1(·) to fN(·) and fS(·) are the non-linear

transforms for N subjects and the time-lagged stimulus respectively.

Our proposed DMCCA model follows a shared autoencoders style which gener-

alizes the DGCCA model.

The preprocessed N EEG responses, along with the common stimuli S are pro-

vided to the DMCCA model. It obtains a dOD denoised representation for all the

N + 1 signals.

The DMCCA model has N + 1 autoencoders with shared encoder outputs. The

architecture of the DMCCA model is shown in Figure 4.1. The encoder has two hidden



Chapter 4. Inter-Subject Analysis 47

layers of 60 units each and the output layer has dO units. The decoding part has two

hidden layers of 60 and 110 units respectively. The decoders are absent in the DGCCA

model.

The networks are trained to maximize the correlation among the encoder outputs

and minimize the MSE between the decoders’ outputs and its inputs. The MSE loss

acts as a regularization term to decrease the effect of noise.

The amount of stimulus time-lag, dS and the encoded outputs’ dimension dO are

hyperparameters of the MCCA models. Their best values are selected for both the

LMCCA and DMCCA methods separately. Figure 4.3 shows the block diagram for

the inputs and outputs of the two MCCA methods. Both the methods take the N

subjects’ EEG responses and the time-lagged stimuli as inputs, and the linear MCCA

returns N + 1 linear transforms (D1, · · · , DN , DS) whereas the deep MCCA returns

N + 1 non-linear transforms (f1, · · · , fN , fS).

4.4 Combinations of Inter- and Intra-Subject analyses

After the MCCA denoising, each subject’s denoised EEG and the common stimuli

(denoised) are considered for the intra-subject analysis. The intra-subject analysis can

be performed using LCCA or DCCA method. This provides the final representations

for each subject’s EEG response and its stimulus.

Therefore, an MCCA method is used for the inter-subject analysis of aligning mul-

tiple subjects’ EEG data followed by a CCA method to perform an intra-subject anal-

ysis of obtaining highly correlated EEG and stimuli representations for each subject

separately. This results in four methods:

1. LMLC: LMCCA (on multiple subjects) + LCCA (for each subject)

2. LMDC: LMCCA (on multiple subjects) + DCCA (for each subject)
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Figure 4.3: The four analysis methods - linear multiway CCA with linear CCA

(LMLC), linear multiway CCA with deep CCA (LMDC), deep multiway CCA with

linear CCA (DMLC) and deep multiway CCA with deep CCA (DMDC) methods.

3. DMLC: DMCCA (on multiple subjects) + LCCA (for each subject)

4. DMDC: DMCCA (on multiple subjects) + DCCA (for each subject)

The outputs are of dR dimension for the LMCCA method and dO dimension for the

DMCCA method. After the MCCA step, the CCA step for each subject is performed

as follows. The denoised EEG responses are provided to the dyadic FIR filterbank of

21 filters followed by a PCA to generate 139D vectors. The dO D stimuli obtained are

projected onto a 1D subspace using PCA, followed by the filterbank resulting in a 21D

data. These steps make sure that the inputs to the CCA transforms are equivalent in

both versions of MCCA (linear and deep).
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4.5 Results

4.5.1 Speech Dataset

The performance of the combinations of inter-subject and intra-subject experiments

on the speech-EEG dataset is shown in Table 4.1. The inter-subject alignment im-

proves the correlation scores for both the intra-subject scores reported in Figure 3.6.

The deep models consistently improve over the linear counterparts. The deep multi-

way CCA approach improves over the linear multiway CCA by an absolute correla-

tion value of 8.8 % on the average. The improvements are also found to be statistically

significant (p < 0.05) for all subjects.

4.5.2 Music Dataset

In the NMED-H dataset, each of the 16 stimuli is provided to 12 subjects for 2 trials.

Hence, for each stimulus, the 12 subjects EEG data can be utilized to align themselves

before performing the intra-subject analysis. The average correlation values after per-

forming both the steps (MCCA and CCA methods) are reported in Table 4.2. The

results are reported for different music conditions - normal, shuffled, time-reversed

and phase-scrambled; and stimuli features - envelope, PC1, RMS and spectral flux.

The DMDC improves over the LMLC method with an average absolute improvement

of 29.3%.

4.5.3 Statistical Analysis : d-primes

The pairwise t-test results, comparing the linear and deep methods, are reported in

the Table 4.1 for the speech task and in Table 4.2 for the music task.
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Models LMLC LMDC DMLC DMDC t-test

Sub1 0.262 0.271 0.375 0.377 {9.1e-7}[5.6]

Sub2 0.289 0.325 0.367 0.374 {5.1e-4}[3.6]

Sub3 0.160 0.177 0.258 0.259 {6.3e-5}[4.2]

Sub4 0.310 0.378 0.341 0.361 {3.6e-2}[1.8]

Sub5 0.309 0.354 0.389 0.392 {8.5e-5}[4.2]

Sub6 0.327 0.342 0.416 0.420 {4.6e-5}[4.4]

Sub7 0.275 0.289 0.310 0.310 {4.4e-2}[1.7]

Sub8 0.221 0.245 0.259 0.272 {2.8e-2}[2.0]

Average 0.270 0.299 0.339 0.344 {9e-14}[7.7]

Table 4.1: Comparison of the four methods - linear multiway CCA with LCCA

(LMLC), linear multiway CCA with DCCA (LMDC), deep multiway CCA with LCCA

(DMLC) and deep multiway CCA with DCCA (DMDC). A pairwise t-test between

LMLC and DMDC methods (indicated as {p-value}[t-value]) is also reported where

all the results are found to be significant (p < 0.05).

As mentioned in Section 2.2, a classification metric is also performed where stimulus-

EEG segments are classified as aligned or misaligned based on the Pearson correlation

measure. The LMLC and DMLC methods are performed on the stimulus-EEG seg-

ments and the corresponding correlation values are computed. Using the correlation

score from the respective models, the Cohen’s d-prime is computed on the correlation

score. The d-prime statistics are presented in Figure 4.4.

This is performed separately for the speech-EEG and music-EEG datasets. The

size of audio-EEG segments plays an important role in the classification task. The

longer segments provide better match/mismatch classification. Figure 4.4 shows that
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Stimulus feature Normal

MCCA Model LMLC LMDC DMLC DMDC t-test

Envelope 0.076 0.146 0.344 0.349 {3e-26}[14]

PC1 -0.007 0.102 0.384 0.321 {1e-26}[14]

RMS 0.001 0.114 0.341 0.246 {3e-13}[8.5]

Spectral Flux 0.017 0.110 0.341 0.343 {2e-24}[13]

Stimulus feature Reversed

MCCA Model LMLC LMDC DMLC DMDC t-test

Envelope 0.062 0.099 0.299 0.384 {1e-37}[21]

PC1 0.030 0.159 0.360 0.323 {2e-19}[11]

RMS 0.042 0.135 0.318 0.220 {1e-08}[6.2]

Spectral Flux 0.053 0.170 0.340 0.321 {1e-16}[10]

Stimulus feature Phase-Scrambled

MCCA Model LMLC LMDC DMLC DMDC t-test

Envelope 0.042 0.092 0.312 0.299 {8e-26}[14]

PC1 0.012 0.166 0.262 0.389 {6e-21}[12]

RMS 0.020 0.108 0.176 0.397 {2e-07}[7.4]

Spectral Flux 0.038 0.207 0.340 0.390 {3e-22}[12]

Table 4.2: For NMED-H dataset, average correlation values for normal, time-reversed

and phase-scrambled stimuli conditions in inter-subject analysis. A statistical signif-

icance test (t-test) between LMLC and DMDC methods is indicated as {p-value}[t-

value].
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Stimulus feature Shuffled

MCCA Model LMLC LMDC DMLC DMDC t-test

Envelope 0.077 0.132 0.341 0.333 {4e-19}[11]

PC1 0.051 0.149 0.345 0.347 {5e-21}[12]

RMS 0.051 0.156 0.327 0.345 {1e-19}[11]

Spectral Flux 0.061 0.145 0.294 0.322 {8e-15}[9.2]

Table 4.2: For NMED-H dataset, average correlation values for the measure-shuffled

stimuli condition in inter-subject analysis. A statistical significance test (t-test) be-

tween LMLC and DMDC methods is indicated as {p-value}[t-value].

the deep model improves over the linear model in all the cases except for 1 second

segments in speech-EEG data. For longer segments, considerable improvements in

the d-prime statistic are observed for the deep models.

4.6 Hyperparameters

We have discussed the effects of various hyperparameters involved in the deep CCA

models for intra-subject analysis. Similarly, we analyze the impact of the hyperpa-

rameters on the correlation values of the deep MCCA models here.

We discuss the effect of dropout percentage, denoised outputs’ dimension, con-

text size of the stimuli and the MSE regularization. We have also tried various deep

MCCA model architectures. A learning rate of 1e − 3 and a batch size of 2048 are

used in the experiments. Unless specified otherwise, the stimuli time-lag is set to 60,

encoders’ outputs are set to 10D, dropout is set to 5%, and the MSE regularization

parameter is set to 0.1.
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Figure 4.4: Comparing the d-prime metric for both the datasets for varying time

length of the segments. The left half corresponds to speech-EEG dataset and the right

half corresponds to music-EEG dataset. The linear-speech and linear-music corre-

spond to the d-prime values for LMLC method’s final representations of speech and

music datasets respectively. Similarly, deep-speech and deep-music correspond to

DMLC method for the two datasets.

4.6.1 Effect of Dropouts

Similar to the intra-subject analysis, we experiment with dropout percentage from

0 − 20% in the deep MCCA model for the speech-EEG dataset. The average corre-

lation values of the 6 subjects chosen from speech-EEG dataset for DMLC methods

are shown in Figure 4.5. It shows the change in correlation values as the amount of

dropouts inserted into the deep MCCA model of DMLC method. When there is no
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Figure 4.5: Effect of dropout on the DMLC method. For the 6 subjects from speech-

EEG dataset, a DMLC method with the deep MCCA model as described in the sec-

tion 4.3 is considered for the DMLC. The effect of dropout is compared on the average

correlation of the final representations of all the subjects.

dropout, there is a tendency for the model to overfit. As the dropout increases, the

effect of noise decreases on the deep MCCA model.

4.6.2 Effect of the Final Representations Dimension

Building the deep MCCA model architecture involves deciding the hyperparameter

encoders’ outputs dimensions dO. The number of output dimensions, dO, is varied

from 2 to 128. The performance for different dO values is shown in the Figure 4.6. The
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Figure 4.6: Effect of encoder output dimension on the DMLC method on the speech-

EEG dataset. Changing the encoder outputs dimension for the deep MCCA model,

the average correlation of the 6 subjects is compared. The deep MCCA model is as

described in the section 4.3.

performance for each dO is measured using the average correlation of the final rep-

resentations after the DMLC method, for the 6 subjects from the speech-EEG dataset.

The best performance is achieved for DMCCA model with encoder outputs of 10D.

And this value of dO is used in all the remaining deep MCCA experiments.

4.6.3 Effect of the Context size for the Stimuli Features

Introducing the time-lags to the stimulus features, dS , helps the DMCCA model to

capture the temporal information of the signals. While varying the dS from 10 to 110,

we have tested the DMLC method on the 6 subjects from the speech-EEG dataset. The
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Figure 4.7: Effect of time-lags dS on the stimulus features on the DMLC. The average

correlation of the 6 subjects from the speech-EEG dataset is studied for different time-

lags applied to the stimuli. The deep MCCA model used in the DMLC is as described

in the section 4.3.

effect of dS on the final correlation metric is shown in the Figure 4.7. The performance

is measured using the average correlation of the 6 subjects’ final representations. A

stimulus time-lag of 80 gives the best performance for a deep MCCA model.

4.6.4 Effect of the MSE Regularization Parameter

In addition to the inter-set correlation loss present in the DGCCA model, a DMCCA

model incorporates an MSE regularization loss. Varying the regularization coefficient

(λ), we show that the additional loss helps the deep MCCA models to obtain better

correlated representations. The effect of the λ on the average correlation of the DMLC
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Figure 4.8: Effect of MSE regularization on the DMLC. The MSE regularization

strength (λ) is varied from 0 to 1000 and the corresponding DMLC method’s per-

formance is measured. The deep MCCA model used in the DMLC is as described in

the section 4.3.

final representations of 6 subjects from the speech-EEG dataset is studied in Figure 4.8.

The value of λ is varied from from 0 to 1000. The results show that the regularization

with λ = 10 gives the best performance for the speech-EEG dataset.

4.7 Remarks

Our experiments show that the DMCCA method can be used in the place of the linear

MCCA method for intra-subject analysis on both the types of audio-EEG datasets.

We have shown that the improvements are statistically significant and provide better
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correlations for the classification task too. The combinations of inter-subject and intra-

subject analyses show the effectiveness of the deep models to be used in the hybrid

CCA models for audio-EEG.



Chapter 5

Extension and Conclusions

As an extension work, we have explored the efficiency of the speech reconstruction

from EEG recordings.

5.1 Neural EEG-speech Translation

A backward model that reconstructs speech from the EEG recordings is studied in

this section. The existing linear models, TRF, along with the recent machine learn-

ing architectures used for sequence-to-sequence translation, LSTM and transformers,

are studied for this task. Experiments incorporating generative adversarial network

(GAN) style objective function are also performed.

We have used the Speech-EEG dataset [25] for the task of speech reconstruction

from EEG data. The EEG data are preprocessed to a sampling rate of 64 Hz, as dis-

cussed in Chapter 2. The EEG data are further processed similar to the intra-subject

analysis (LCCA) methods, which project the EEG responses onto a 139D subspace.

For the stimuli data, the speech signals are represented using three types of features:

spectrogram, WORLD vocoder [69] and mel spectrogram.

59
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For extracting the spectrogram features, we have obtained the spectrograms with

256 point FFT at a hop rate of 15.625 ms and 50% overlapping windows. Recent ECoG

literature [70, 71] has shown that intelligible speech can be reconstructed from the

ECoG recordings. These experiments by Akbari et al. [70] show that the WORLD

vocoder [69] representations are suited for this task. Additionally, recent deep learn-

ing advancements have shown that audible speech can be reconstructed from the mel

spectrograms using MelGANs [72]. The speech stimuli are represented using 80D

features for mel spectrograms. Hence, we experimented with three kinds of stimuli

representations: 129D spectrogram, 1027D (1 + 513 + 513) WORLD vocoder [69] and

80D mel spectrogram features.

5.1.1 Transformer

A typical transformer [73] consists of a pair of encoder and decoder. The transformer

takes a sequence as its input, generates a sequence from it, and is trained to predict the

output sequence as close as possible to the target sequence. Each encoder layer has

two sublayers: a multi-head self-attention and a feed-forward dense neural network.

Both the sublayers contain a residual connection layer followed by layer normaliza-

tion.

We have used a transformer encoder model for reconstructing the auditory stim-

uli using EEG responses. The transformer is trained with an objective function of

MSE loss between the reconstructed stimuli features and the actual stimuli features.

Figure 5.1 shows the transformer encoder model as the backward model for speech

reconstruction from the EEG data. Further details about training are discussed in

Section 5.1.4.
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Figure 5.1: The pipeline of the backward model with the processed EEG as input and

the objective function as the MSE loss or adversarial loss between the generated log

spectrograms and the actual log spectrograms.

5.1.2 LSTM and Bi-LSTM

Long Short Term Memory (LSTM) models have been introduced by Hochreiter et

al. [74] to tackle the problem of vanishing and exploding gradients. For the speech re-

construction from EEG task, we have explored LSTM and Bidirectional LSTMs which

receive the EEG recordings as input, and generate the stimuli features as outputs.

5.1.3 Adversarial Loss Regularization

To reduce the noise and direct the output representations towards the natural stimuli

features, an adversarial based regularization is incorporated into the objective func-

tion. To achieve this, a generative adversarial network (GAN) style model is built

using the transformer / LSTM models.
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A convolutional neural network is used as the discriminator. The generator pro-

duced stimuli features along with the actual stimuli features are used to train the dis-

criminator, and the corresponding loss is used as a regularization to the MSE objective

function of the transformer.

5.1.4 Architecture of the reconstruction model

Figure 5.2: The pipeline of the backward model with the processed EEG as input

which estimates the log magnitude spectrogram features of the speech.

The pipeline for the task of speech reconstruction task, using spectrogram features,

from the EEG signals is as follows. The log-magnitude features are provided as targets

and the inputs are 139D EEG features for the backward models. The speech spectro-

grams are divided into phase and log-magnitude features. The models are trained

to estimate the log-magnitude speech features, which are multiplied with the actual

phase features to reconstruct the speech. This is presented in the Figure 5.2.

When vocoder and log-mel spectrogram representations are utilized as the stimuli

features, the model estimates the stimuli features which are directly provided to the

synthesizer, i.e., the vocoder synthesizer or a pre-trained MelGAN [72], to reconstruct

the speech.

The backward models are realized using transformers or LSTMs. For comparison,
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TRF based linear model is also explored for the task. For the transformer based back-

ward model, a 2 layer encoder with 2 heads self-attention and a 2 layer feedforward

network with 512 units in each layer is used. And 2 layers LSTM and Bi-directional

LSTM based models with hidden vectors of size 512D are studied.

For the GAN based training, the backward models act as the generator. A pre-

trained VGG-19 [75] is used as the discriminator, with all the parameters being train-

able. A regularization parameter of λ = 1e − 3 is used. Hence, the reconstruction

model’s objective function is designed as :

MSE(G(z),x) + λEz[log(1−D(G(z)))] + Ex[log(D(x))] (5.1)

LSD Spectrogram Vocoder Mel

GAN reg. (λ) 0 1e− 3 0 1e− 3 0 1e− 3

TRF 22748.24 - 17337.9 - 15735.74 -

LSTM 6.304 6.275 4.606 4.622 8.543 8.568

Bi-LSTM 5.984 5.980 4.634 4.830 7.855 7.986

Transformer 6.397 6.421 4.957 5.043 8.568 8.687

Table 5.1: Performance of the four backward models (TRF, LSTM, Bi-LSTM, trans-

former) for the three stimuli features (Spectrogram, Vocoder, Mel), with and without

GAN regularization.

5.1.5 Results

The performance of the backward models is measured as the log spectral distance

(LSD) between the ground-truth and estimates speech signals. The experiments are
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performed on one subject from the speech-EEG dataset and reported for the overall

performance of the 20 cross-validation experiments. Four types of backward models

are tried: TRF, LSTM, BiLSTM and transformer, for three types of stimuli features:

spectrogram, WORLD vocoder features and mel spectrogram. A set of experiments

with and without the GAN regularization is also studied. The three stimuli features

are compared in the Table 5.1. The spectrograms of the estimated speech for the back-

ward models with spectrograms as the stimuli features are shown in Figure 5.3.

Figure 5.3: The magnitude spectrograms of the estimated speech for the backward

models with spectrograms as the stimuli features. The top-left image shows the spec-

trogram of the ground truth speech. The top-right image shows the spectrogram of

the TRF output, the bottom-left image shows that of the LSTM outputs and bottom-

right shows that of the transformer outputs. A sample of almost 5 seconds is selected

and its magnitude spectrogram is plotted.
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5.1.6 Observations

The results show that the deep models offer a huge advantage over the linear model

for the task of speech reconstruction. But, the spectrograms and the generated speech

are not intelligible. To investigate the capacity of the transformer and LSTM models

in analyzing the EEG recordings, we have trained an auto-encoder model using them

and found that the LSTM autoencoder model had an advantage over the other models

to capture the patterns in the EEG recordings. Next, we tried increasing the capacity of

these models by increasing the depth. Increasing the number of layers decreased the

speech reconstruction audibility (LSD increased). This points to the issue of limited

datasets (similar to Section 3.5).

Hence, more investigation with larger amounts of data is required to build mean-

ingful backward models.

5.2 Applications

Some of the applications of the study can be stated as:

1. Understanding the Auditory Perception Modelling the relationship between

the acoustic stimuli and their responses helps us to understand how brains pro-

cess the auditory information and what components of the stimuli are observ-

able in the EEG data.

2. Smart Hearing Aids A cochlear implant provides acoustic information to the

user’s brain in the form of electrical signals. It provides electric signals that

directly stimulate the auditory nerves near the ears. But once installed, it cannot

adapt to the user requirements. Its processing systems are fixed, static and not

flexible. It cannot recognize what the user is trying to attend. It cannot adapt to
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the changes of the user’s brain. The users cannot cognitively control the device.

An EEG based hearing device can provide adaptive solutions.

3. Other Medical Applications The mere possibility of decoding what a coma pa-

tient might be listening to, is a fascinating application in itself. This study can

also be extended to animals, especially our pet friends like dogs and cats.

4. Brain-Computer Interfaces The methods discussed in the study helps to build

better Brain-Computer Interfaces for various applications.

5.3 Summary and Limitations

To summarize our work, we have explored the existing linear hybrid models for

audio-EEG data, proposed their deep variants, and have also illustrated that the deep

models statistically significant improvements in correlation. In the Chapter 3, we

have proposed three deep CCA methods for intra-subject analysis which outperform

their linear counterparts for both the speech-listening and music-listening tasks. In

the Chapter 4, we have proposed the deep MCCA method, DMCCA, for normaliz-

ing the EEG recordings from multiple subjects listening to a common stimulus, which

outperform the linear MCCA for both the speech-listening and music-listening tasks.

We have discussed the four CCA combinations (LMLC, LMDC, DMLC and DMDC)

for the intra-subject and inter-subject analyses and have shown that the deep versions

perform better than the linear versions overall. In the last chapter, we have explored

a backward model using transformers and an adversarial loss which generates the

speech stimuli from the processed EEG response and stimuli’s phase information. We

have shown that it performs better than the linear TRF counterpart, while still not

being able to generate audible output.
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5.3.1 Limitations

The limitations of our work are as follows:

1. Lack of data: Exploring various architectures of the deep models has shown a

common trend of decrease in the performance while increasing the depth of the

neural networks. As discussed in the chapter 2, the datasets used in our exper-

iments are very small compared to a typical machine learning setting. As the

stimulus is a naturalistic audio signal and the field is still emerging, it is difficult

to accumulate large datasets for the naturalistic listening task. The depth of a

neural network increases its capacity, and the inadequate audio-EEG data with

significant noise results in the neural networks getting overfit to the noise.

2. EEG Noise: The EEG readings are recorded from the scalp of the subjects. This

results in collection of brain signals not only related to the auditory stimuli.

These unrelated signals act as noise while studying the stimulus-response re-

lationship. Though invasive methods suppress the noise, they need extensive

surgical procedures to record the data. Hence, more noise suppression methods

are needed to work with scalp recordings like EEG.

3. Analytical Study: This work have been an analytical study measuring the cor-

relation values of the final representations (performance) for the existing and

proposed deep methods. The neural and biological impact of the improved cor-

relations analyzed with various speech representations are of substantial interest

to understand what the brain encodes while listening to natural speech.
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5.4 Conclusions and Future Directions

To conclude the work, we discussed the motivation for decoding the auditory brain

and reviewed the existing methods for single-trial naturalistic audio-EEG data. We

described the linear models like TRF and CCA, their limitation from the simplistic

linear assumption, and the two datasets (speech and music) for the analysis. Later,

we studied the intra-subject analysis and inter-subject analysis, and illustrated that

the proposed deep methods offer an advantage over the baseline linear models for

both the datasets. As an extension work, we explored the paradigm of speech stimu-

lus reconstruction from the recorded EEG signals, and discussed the advantages and

limitations of the deep models in this context.

The future directions for this work are:

1. Data Collection As the deep models’ performance is limited by the amount of

data in the datasets, the collection of more naturalistic audio-EEG data can sig-

nificantly impact the single-trial audio-EEG analysis.

2. Exploring robust ML models As the EEG data contain significant levels of noise,

deploying more robust machine learning models can improve the analysis.

3. Transfer Learning A common practice for training a complex model on small

datasets is to transfer learn the weights from a large similar dataset. Incorporat-

ing such techniques can provide better initialization for the analysis to start.

4. Expanding the study to fMRI and MEG The study can be expanded to other

brain responses collection techniques like fMRI and MEG to get a better under-

standing of the proposed methods.
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5. Interpretation and Neuroscience Interpreting the learnt features by incorporat-

ing the knowledge from theoretical neuroscience can help us elicit more infor-

mation about the models and the brain.
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