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Abstract— The process of decoding the auditory brain for an acoustic
stimulus involves finding the relationship between the audio input
and the brain activity measured in terms of Electroencephalography
(EEG) recordings. Prior methods focus on linear analysis methods
like Canonical Correlation Analysis (CCA) to establish a relationship.
In this paper, we present a deep learning framework that is learned
to maximize correlation. For dealing with high levels of noise in
EEG data, we employ regularization techniques and experiment with
various model architectures. With a paired dataset of audio envelope
and EEG, we perform several experiments with deep correlation
analysis using forward and backward correlation models. In these
experiments, we show that regularized deep CCA is consistently able
to outperform the linear models in terms of providing improved
correlation (up to 9% absolute improvement in Pearson correlation
which is statistically significant). We present an analysis that highlights
the benefits of using dropouts for neural network regularization in the
deep CCA model.

Clinical relevance — The proposed method helps to decode human
auditory attention. In the case of overlapping speech from two speakers,
decoding the auditory attention provides information about how well
the sources are separated in the brain and which of the sources is
attended. This can impact cochlear implants that use EEG for decoding
attention as well as in development of BCI applications. The correlation
method proposed in this work can also be extended to other modalities
like visual stimuli.

I. INTRODUCTION

The two main types of non-invasive methods to record brain
activity with high temporal resolution are electroencephalography
(EEG) and magnetoencephalography (MEG). These signals tend
to be highly noisy (with SNRs below −20dB) [1] as the brain
recordings capture all the underlying processes in the brain in
addition to the desired stimuli induced effects. One of the most
common approaches to alleviate this noise is to analyze the data
using the event related potential (ERP) method [2] which involves
the averaging of brain potentials for a large number of repetitions
of the input stimuli for a given condition. Averaging removes the
components that are out-of-phase while preserving components that
are related to the stimuli. However, this approach is practical only
for short stimuli or a small number of isolated events. As EEG
analysis extends to the study of responses to longer and naturalistic
stimuli such as speech or music, new approaches to analyze single
trial EEG data are in substantial demand. For example, the decoding
of the semantic components of the auditory stimulus from the EEG
data can provide insight into semantic processing in the brain [3]
or highlight the attended speaker in a cocktail party listening
environment [4], [5].
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The single trial decoding techniques that have been successful
thus far assume that the entire system is linear and time-invariant.
The earliest methods in this direction approximated the relation
between stimulus and response as a convolution with an impulse
response referred to as the temporal response function (TRF) [6].
This approach relies on a reverse correlation/system identification
framework. The linear TRF model can be a forward model where
the model predicts the EEG response from the audio or a backward
model where the neural response is used to predict the features
of the audio signal. The measure of performance is typically the
Pearson correlation between the predicted signal and the true signal.
However, using these methods, the average correlation on held-
out EEG is typically in the range 0.1-0.2 [6]. The low correlation
may be attributed to the fact that EEG signals represent the stimuli
effects along with the other brain processes and thus only a fraction
of the variance can be explained from the external stimuli.

Canonical correlation analysis (CCA) is a more powerful linear
method to project two signals to a domain that maximizes the
correlation between the two signals [7], [8]. The method finds
a linear transform on each of the signals that minimizes the
variability irrelevant to the other signal. Recently, the method has
been successfully applied in forward and backward models in
auditory EEG analysis using a combination of linear transforms
and convolutions [9], [10], [11]. However, the model is still based
on linear assumptions.

In this work, we propose to develop a deep CCA model for
audio-EEG data. A deep model of CCA was proposed for image
data [12], [13] where the model learns deep feature embeddings
from each of the datasets which maximize the correlation. This
method was shown to be significantly better than the linear CCA
for image data under low noise conditions. The main challenge
compared to image data [12] is the significant amount of noise
present in the EEG signal. We use the dropout strategy to avoid
overfitting and also use a leaky-ReLU based non-linear activation.
The dropout regularization prevents the model from overfitting.
In audio-EEG experiments with the forward and backward model
and various CCA configurations, we show that the deep CCA
consistently improves over the linear CCA model. A pairwise t-test
comparing the proposed method with the linear CCA also reveals
that the improvements are statistically significant for all the subjects
(p < 0.01).

The rest of the paper is organized as follow. Sec. II gives
the mathematical details of CCA and deep CCA. Sec. III details
the proposed model of deep CCA for audio-EEG analysis. The
experiments and analysis are presented in Sec. IV. A summary of
the work is given in Sec. V.

II. CANONICAL CORRELATION ANALYSIS

A. Linear CCA

For a pair of multi-variate datasets, Canonical Correlation Anal-
ysis (CCA) [7] finds the optimal linear transforms that maximize
the Pearson correlation between the transformed vectors.

Let, x and y denote D1 and D2 dimensional vectors respectively.
Let, n denote the dimension of the desired canonical sub-space



which maximizes the correlation between transformed vectors. For
example, if n= 1, let u1, v1 denote the pair of vectors which project
x and y respectively into 1-dimensional space. Now, the problem is
to find u1 and v1 such that the correlation, ρ , between x′ = u1

T x and
y′ = v1

T y is maximized. The problem can be written as maximizing

ρ =
u1

T Cxyv1√
u1T Cxxu1v1T Cyyv1

(1)

where, Cxy = E[(x− µx)(y− µy)
T ] and Cxx, Cyy are the auto-

correlation matrices of x, y respectively.
Let, T , C−1/2

xx CxyC−1/2
yy . Then, the solution to the CCA problem

(u∗1 and v∗1) are given as the first left and right singular vectors
of the T matrix and the maximum correlation is the top singular
value [12]. This can be extended for n> 1 by finding the subsequent
singular vectors.

B. Deep CCA

The extension of the linear transformation based CCA analysis
to deep transformation learning based CCA was first proposed
by Andrew et.al [12]. The two input sets of vectors are passed
through a pair of feed-forward connections to undergo a set of
non-linear transformations. The outputs of each network are the
final representations on which the cross correlation is computed.
The neural network is trained to maximize the correlation cost.

Let the non-linear transform performed by the first neural net-
work on x be denoted as f1(·). Similarly, let the second network
transformation on y be denoted as f2(·). Let θ1 be the set of all
trainable parameters of the first neural network and θ2 be that of
the second network. The deep CCA optimization is

(θ∗1 ,θ
∗
2 ) = argmax

(θ1,θ2)
corr( f1 (x;θ1) , f2 (y;θ2)) (2)

Let the dimensionality of the outputs of the two neural networks
be n and a batch of m examples from each of the (x, y) are used in
training. Let, Hx,Hy ∈ Rn×m be the matrices whose columns are
the feed-forward network output from the first and second network
respectively.

Let, H̄x = Hx− 1
m Hx1 and similarly, H̄y = Hy− 1

m Hy1 denote
the centred data matrices, where 1 is an all-1s matrix of dimension
m×m. Now, the covariance of the feed-forward network outputs is
given by,

Cxx =
1
m

H̄xH̄T
x + r1I (3)

Cyy =
1
m

H̄yH̄T
y + r2I. (4)

where r1,r2 > 0 are the regularization parameters so that the
covariance matrices are positive definite and I is the identity matrix.
Similarly, the cross correlation is Cxy =

1
m H̄xH̄T

y .
Let, T , Cxx

−1/2CxyCyy
−1/2. It can be shown [12] that the

gradient of corr
(
Hx,Hy

)
is given by,

∂ corr
(
Hx,Hy

)
∂Hx

=
1

m−1
(
2∇xxH̄x +∇xyH̄y

)
(5)

where

∇xy = Cxx
−1/2UV ′Cyy

−1/2, (6)

∇xx =−
1
2

Cxx
−1/2UDU ′Cxx

−1/2 (7)

where U ,V and D are obtained from the singular value decompo-
sition of T as T = UDV ′. Similar expression can be obtained for
gradient with respect to Hy. These gradients are backpropagated to

Fig. 1. Comparison between linear and Deep CCA for different SNR on
the MNIST task. The number of dimensions at the output is 50.

learn the model parameters θ1 and θ2 of the two neural networks
f1(.) and f2(.).

The original Deep CCA work [12] showed that the correlation
between left and right halves of MNIST hand-written digit images
can be increased significantly by using the deep CCA model over
the linear CCA model. In this work, we analyze the impact of noise
on correlation training. Specifically, we apply the linear CCA and
deep CCA with varying amounts of noise on the left half of the
image (similar to the presence of noise in EEG recordings) and
measure the performance. This result in shown in Fig. 1. Here, we
use n = 50 dimensions at the output of linear CCA/deep CCA. As
seen here, when the models are trained with noise, the correlation
drops significantly for both the models in the presence of noise.
In particular, the deep models do not have an advantage over the
linear models under noisy conditions below −15dB. The difficulty
in modeling noisy data proves to be challenging for the DCCA
model when it is applied to EEG data. This is partly alleviated
with dropout regularization.

III. AUDIO-EEG DCCA

The linear CCA analysis described by de Cheveigné [9] forms
the baseline for this work. We use the same stimuli response data
collected by Liberto et. al. [14]. Specifically, the EEG recordings
from 128 channels are recorded when subjects are listening to a
male speaker reading snippets of a novel. A Biosemi system was
used for EEG data collection that was sampled at 512 Hz. We
use 20 speech excerpts, each of duration approximately 3 minutes
presented diotically via headphones. The EEG data were down-
sampled to 64 Hz. It was further processed using de-trending and
de-noising using noise tools software [15]. The data were processed
with band-pass filtering between 0.1−12 Hz. The stimulus data was
obtained from audio sampled at 44100 Hz. The audio envelope was
obtained by a squaring and smoothing operation by convolution
with a square window and downsampled to 64 Hz. The envelope
was further compressed to the power 1/3. In all our experiments,
we perform DCCA projection to one dimension and compare with
the linear CCA projection to one dimension. More details about the
EEG pre-processing and the audio envelope extraction are described
by de Cheveigné [9].

The configuration of DCCA models that are tested in this work
are shown in Fig. 2.

1) DCCA1 : The 40 time delayed audio envelope samples and
the 40 principal components of the 128 channel EEG are



Fig. 2. In DCCA1 model, the time lagged stimulus audio is provided to
the Deep CCA module whereas EEG response is provided after performing
PCA, whose outputs’ correlation is computed. In DCCA2 model, the outputs
of the PCA on the EEG response side go through a set of time lags and
one more PCA before being provided to the Deep CCA module. In DCCA3
model, both the audio inputs and the EEG outputs go through a filterbank
of FIR filters rather than delays.

provided to the Deep CCA network as inputs.
2) DCCA2 : In this case, the 128 channel EEG is processed with

a PCA transformation of 60 dimensions. Then, 10 time lags of
60D EEG data yielding 600 dimensions is further processed
with another PCA transformation to generate 80 dimensional
response data. The 80 time delayed audio envelope samples
(similar to DCCA1) are used for the stimulus side.

3) DCCA3 : For this model, a filter-bank of 21 FIR band-pass
filters whose characteristics like centre frequency, bandwidth
and duration of impulse response are uniformly distributed
on a logarithmic scale. The 21 D output of the audio en-
velope after passing through the filter-bank is used as the
representation from the stimulus side. The 60 D PCA output
of the original 128 channel EEG through the 21 filter filter-
bank gives 1260 dimensional response. This high dimensional
vector is processed with another PCA transformation to 139
dimensional output. We use a wavelet based filter-bank for
this implementation.

All the above model configurations are homologus to the linear
CCA models proposed by de Cheveigné et. al. [9]. We try two
neural network architectures for the deep CCA models. The first
architecture [12] contains a 2 hidden layer network for each of the
stimulus side (audio envelope) and the response side (EEG), with
2038 and 1608 units for the first and second layers respectively
followed by a 1 dimensional output layer. The second architecture
is similar to the one proposed by Wang et. al. [13] and it contains 4
hidden layers, each of 1024 units. We use a leaky ReLU activation
function, with a negative slope coefficient of 0.1, at the output of
the deep CCA model [16].

IV. RESULTS

The first architecture [12] is consistently found to provide better
results, when all the remaining hyperparameters are same for both
the architectures [12] [13]. So, all the following results are from
the first architecture. In this work, the leaky ReLU was found to be
empirically better than other output activation functions like linear
and sigmoid. We also incorporate dropout regularization [17], [18]
in the deep CCA model training to avoid over-fitting in the noisy
conditions. With varying amounts of dropout regularization, we

Fig. 3. For subject 4, DCCA3 model (averaged) correlations as a function
of the dropout regularization in the neural network. The horizontal dotted
line is of the linear CCA3 model. The correlations are averaged over all the
20 validation sessions.

show that the deep CCA model can outperform the linear model in
the noisy conditions.

Each subject recorded 20 sessions with approximately 160 sec-
onds of audio recording in each session. All the results are obtained
for 20 fold validation experiments in which one of the sessions is
held out as the test data while the 19 other sessions are used in
training the model (both the linear models as well as the DCCA
models). Given a sampling rate of 64 Hz, the approximate number
of instances for the model training is about 19 ∗ 64 ∗ 160 ≈ 200k.
This set of training instances were further split randomly into
training and validation with a 90−10 split.

The first experiment compared the impact of dropout on the
model training. The first set of experiments is performed on the 20
sessions from one subject in the pool. Given that the deep models
are prone to over-fitting, particularly with the high levels of noise in
EEG data, we find that using dropout in the model training provides
significant boost in the correlation performance (Fig. 3). The best
average correlation (among all the 20 sessions) is obtained for a
dropout of 5%. All the subsequent experiments use dropout in the
model training.

All three DCCA models are compared with their linear counter-
part and these results are shown in Fig. 4. As seen here, among all
the linear models, the CCA3 model gives the highest correlation
(similar to the analysis by de Cheveigné [9]). Comparing linear
CCA versus DCCA for all the three configurations, it is seen
that the DCCA outperforms the linear model consistently for all
the sessions. The best correlation results are obtained for DCCA3
model (the average correlation over all the 20 sessions is about
0.4). The absolute improvement in correlation over the best linear
model for the DCCA3 model is about 9% in terms of the Pearson
correlation.

The comparison of the average correlation for the linear CCA3
model and the DCCA3 model is shown in Fig. 5 for all 6 subjects.
Note that, for each subject 20 linear and deep CCA models were
trained with leave one out training and the average correlation on
the held out session is used for that subject. As seen here, the
DCCA model consistently improves over the linear CCA model
in all the evaluations. The absolute improvements in terms of %
correlation ranges from 2−9 % for these subjects. We also tested



Fig. 4. Comparison of linear and deep CCA models with CCA1, CCA2 and CCA3 configurations, for subject 4. The session indices (x-axis) are arranged
in the non-decreasing order of the correlations obtained for the linear CCA3 model The first three plots show the results for 20 sessions and the last plot
shows the average over all the 20 sessions. A dropout value of 0.1 was used in these experiments.

Fig. 5. Comparison of linear CCA3 and the DCCA3 configuration for
different subjects.

the statistical significance of the improvements in correlations for
the DCCA model over the linear CCA method using a pairwise
t-test on each subject. The improvement in correlation values were
found to be statistically significant for all the subjects (p < 0.01).
These results highlight that the deep methods have the potential to
become the de-facto standard in auditory attention decoding.

V. SUMMARY

In this paper, we used a deep CCA model to decode auditory EEG
activity. The audio stimuli features are the time-lagged envelopes
while the EEG response features are the PCA transformed EEG
recordings. The deep CCA model performs a non-linear mapping
of the stimuli/response where the correlation is maximized. We ex-
perimented with several configurations of the deep CCA model and
show that the model consistently outperforms the linear counterpart.
In summary, this work shows that the deep correlation methods
constitute a useful method for analyzing complex relationships
between stimulus and EEG recordings. In future, we plan to extend
this approach to other auditory decoding tasks like reconstructing
the spectrogram from EEG and to understand the encoding of
various acoustic features in the EEG signal.
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